A chimeric p53 cDNA was constructed so that the fragment coding for 39 residues of the chicken p53 tetramerization domain replaced the corresponding region of human p53. The chimeric cDNA substantially inhibited the colony-forming ability of transfected human and mouse cells, suggesting a suppressory potential for its product. The chimeric p53 activated promoters containing p53-responsive elements. In contrast to wild-type human p53, the chimeric p53 remained capable of transcription activation in the presence of dominant-negative mutant p53-His175. This makes the chimeric p53 a convenient model for elaborating gene therapy protocols for tumors with dominant-negative p53 forms. The chimeric p53 may be used to study the role of transdominance of p53 mutants in carcinogenesis and the interactions of p53 with related transcription factors (p73, p63).

Download full-text PDF

Source

Publication Analysis

Top Keywords

chimeric p53
20
p53
13
human p53
8
p53 chimeric
8
chimeric
6
[construction chimeric
4
chimeric tumor
4
tumor suppressor
4
suppressor p53
4
p53 resistant
4

Similar Publications

PROTACs have emerged as a therapeutic modality for the targeted degradation of proteins of interest (POIs). Central to PROTAC technology are the E3 ligase recruiters, yet only a few of them have been identified due to the lack of ligandable pockets in ligases, especially among single-subunit ligases. We propose that binders of partner proteins of single-subunit ligases could be repurposed as new ligase recruiters.

View Article and Find Full Text PDF

Pharmacological reactivation of the tumor suppressor p53 remains a key challenge for the treatment of cancer. Acetylation Targeting Chimera (AceTAC), a novel technology is previously reported that hijacks lysine acetyltransferases p300/CBP to acetylate the p53Y220C mutant. However, p300/CBP are the only acetyltransferases harnessed for AceTAC development to date.

View Article and Find Full Text PDF

TP53-mutated myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) remain a challenging spectrum of clonal myeloid disease with poor prognosis. Recent studies have shown that in AML, MDS, and MDS/AML with biallelic TP53 loss, the TP53-mutated clone becomes dominant. These are highly aggressive diseases that are resistant to most chemotherapies.

View Article and Find Full Text PDF

Modulation of TCR stimulation and pifithrin-α improve the genomic safety profile of CRISPR-engineered human T cells.

Cell Rep Med

December 2024

Technical University of Munich (TUM), School of Medicine and Health, Department of Preclinical Medicine, Institute for Medical Microbiology, Immunology and Hygiene, 81675 Munich, Germany; TUM, Institute for Advanced Study, 85748 Garching, Germany. Electronic address:

Article Synopsis
  • - CRISPR-engineered CAR T cells show promise in cancer treatments but have been linked to chromosomal issues due to the CRISPR process.
  • - The study reveals that increased T cell activation and faster proliferation lead to larger DNA deletions, while non-activated T cells have a lower risk but are less effective for gene editing.
  • - A small molecule called pifithrin-α can reduce chromosomal damage while preserving the functionality of CRISPR-engineered T cells, making it a viable strategy for improving genomic safety.
View Article and Find Full Text PDF

The tumor suppressor protein p53 is among the most commonly mutated proteins across a variety of cancer types. Notably, the p53 R175H mutation ranks as one of the most prevalent hotspot mutations. Proteolysis-targeting chimeras (PROTACs) represent a class of bifunctional molecules capable of harnessing the cellular ubiquitin-proteasome pathway to facilitate targeted protein degradation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!