Peptides that elicit midgut stem cell differentiation isolated from chymotryptic digests of hemolymph from Lymantria dispar pupae.

Arch Insect Biochem Physiol

Insect Biocontrol Laboratory, U.S. Department of Agriculture, Bldg 011A, Rm 214, BARC West, Beltsville, MD 20705, USA.

Published: June 2002

Isolated stem cells of Heliothis virescens, cultured in vitro, were induced to differentiate by Midgut Differentiation Factors 3 and 4. These were peptides identified from a chymotrypsin digest of hemolymph taken from newly pupated Lymantria dispar. Partial purification was obtained by filtration through size exclusion filters. The most active preparation was subsequently subjected to a series of 3 Reverse Phase-HPLC procedures. Partial sequences of the peptides were identified via automated Edman degradation as the nanomers EEVVKNAIA-OH (MDF 3) and ITPTSSLAT-OH (MDF 4). These sequences were commercially synthesized. The synthetic compounds proved active in a dose-dependent manner. Stem cells responded to synthetic MDF 3 and MDF 4 as they did to previously identified peptides MDF 1 and 2, which have quite different amino acid sequences. All of the 4 MDFs administered singly induced statistically similar differentiation responses at 2 x 10(-8), 2 x 10(-9), and 2 x 10(-10) M. However, pairs of the 4 MDFs produced even more differentiation, the same response as one alone, no response, or were inhibitory, dependent on the MDF pair and its concentration. The data suggests complicated receptor interactions.

Download full-text PDF

Source
http://dx.doi.org/10.1002/arch.10033DOI Listing

Publication Analysis

Top Keywords

lymantria dispar
8
stem cells
8
peptides identified
8
mdf
6
peptides
4
peptides elicit
4
elicit midgut
4
midgut stem
4
stem cell
4
differentiation
4

Similar Publications

RNAi-mediated knockdown of HcCAT2 depresses the adaptive capacity of Hyphantria cunea larvae to cytisine and coumarin.

Int J Biol Macromol

January 2025

School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China. Electronic address:

The diversity of host plants is an important reason for the global spread of Hyphantria cunea. However, no studies have explored the role of the antioxidant defense system with catalase (CAT) as the core at the molecular level in the adaptation of the H. cunea to host plant secondary metabolites.

View Article and Find Full Text PDF

Resistance of Populus davidiana × P. bolleana overexpressing cinnamoyl-CoA reductase gene to Lymantria dispar larvae.

Transgenic Res

January 2025

Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, 150040, China.

Lignin is a crucial defense phytochemical against phytophagous insects. Cinnamoyl-CoA reductase (CCR) is a key enzyme in lignin biosynthesis. In this study, transgenic Populus davidiana × P.

View Article and Find Full Text PDF

The Pb tolerance initiated by LdZIP8 in Lymantria dispar larvae: An effective defense against heavy metal stress.

J Hazard Mater

December 2024

School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China. Electronic address:

Pb is a prevalent heavy metal contaminant in the habitats of herbivorous insects. This study investigated the tolerance level of Lymantria dispar larvae to Pb and its corresponding mechanism focusing on the role of ZIP genes. The detrimental impacts of Pb on larval growth and survival exhibited a dose-dependent relationship, with a survival rate of 48 % even at the extreme concentration of 3424 mg/kg.

View Article and Find Full Text PDF

Weak-form inference for hybrid dynamical systems in ecology.

J R Soc Interface

December 2024

Department of Applied Mathematics, University of Colorado, Boulder, CO, USA.

Species subject to predation and environmental threats commonly exhibit variable periods of population boom and bust over long timescales. Understanding and predicting such behaviour, especially given the inherent heterogeneity and stochasticity of exogenous driving factors over short timescales, is an ongoing challenge. A modelling paradigm gaining popularity in the ecological sciences for such multi-scale effects is to couple short-term continuous dynamics to long-term discrete updates.

View Article and Find Full Text PDF

AMPK (AMP-activated protein kinase) is a crucial cellular energy sensor across all eukaryotic species. Its multiple roles in maintaining energy homeostasis, regulating cellular metabolic processes have been widely investigated in mammals. In contrast, the function of AMPK in insects has been less reported.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!