Purpose: The nucleoside 8-chloro-adenosine (8-Cl-Ado) is currently being developed for treatment of multiple myeloma and leukemias. Although accumulation of the phosphorylated drug product is known to occur within cell lines, its metabolic fate in plasma or circulating cells in animals is unclear. The purpose of the present study was to determine the pharmacology of 8-Cl-Ado in rodents through examination of plasma and cellular levels of parent drug and metabolites. In addition, we sought to determine whether an inhibitor of adenosine deaminase, 2'-deoxycoformycin (dCF), could enhance intracellular formation of 8-Cl-ATP by preventing degradation of 8-Cl-Ado to 8-Cl-inosine (8-Cl-Ino).
Methods: A validated HPLC assay permitted simultaneous determination of 8-Cl-Ado, 8-Cl-adenine (8-Cl-Ade), dCF, and 8-Cl-Ino. Radiolabeled cellular nucleotides were obtained from peripheral blood mononuclear cells (PBMC) of both mice and rats using a perchloric acid extraction procedure and were separated by HPLC.
Results: Stability of 8-Cl-Ado in the presence or absence of dCF was examined in fresh plasma from mice, rats and humans. Conversion of 8-Cl-Ado to 8-Cl-Ino was only marginally affected by coincubation with dCF. In CD(2)F(1) mice given 8-Cl-Ado i.p. at 100 mg/kg, there was rapid appearance in plasma of both 8-Cl-Ade and 8-Cl-Ino. The identities of the metabolites were confirmed by mass spectrometry. The plasma [(3)H]8-Cl-Ado concentration 1 h after drug injection was 1.3 micro M in mice while the intracellular levels of [(3)H]8-Cl-AMP and [(3)H]8-Cl-ATP were 1 m M and 350 micro M, respectively. Mice that had received dCF (2 mg/ml) 30 min prior to [(3)H]8-Cl-Ado had 27% less intracellular [(3)H]8-Cl-ATP in PBMC compared to mice without dCF pretreatment. The pharmacokinetics of 8-Cl-Ado were examined in greater detail in Sprague-Dawley rats. Animals were given [(3)H]8-Cl-Ado (42.5 mg/kg, i.v.) by itself or 30 min following injection of dCF (4 mg/kg). Mononuclear cells in mice accumulated 350 or 1200 micro M [(3)H]8-Cl-ATP 1 h after injection of either 50 or 100 mg [(3)H]8-Cl-Ado, respectively. The major metabolite in these cells was the monophosphate, which was four- to sevenfold higher in concentration than the triphosphate metabolite. In rats, [(3)H]8-Cl-AMP concentrations in PBMC were similar to those of the triphosphate metabolite which achieved a peak of 90 micro M 2 h after a bolus injection of 8-Cl-Ado (40 mg/kg). Cellular clearance of 8-Cl-ATP appeared to be slow: 24 h after injection of 8-Cl-Ado the cellular concentration of 8-Cl-ATP was still 40 micro M.
Conclusions: The use of dCF did not significantly alter 8-Cl-ATP levels in PBMC and is not considered to be a useful therapeutic strategy. Even though a portion of 8-Cl-Ado is metabolically inactivated in plasma, high levels of cytotoxic 8-Cl-ATP accumulated intracellularly in these animals and were retained for a considerable length of time. Further development of 8-Cl-Ado is recommended.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00280-002-0456-0 | DOI Listing |
PLoS Pathog
January 2025
Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Function-to-find domain (FIIND)-containing proteins, including NLRP1 and CARD8, are vital components of the inflammasome signaling pathway, critical for the innate immune response. These proteins exist in various forms due to autoproteolysis within the FIIND domain, resulting in full-length (FL), cleaved N-terminal (NT), and cleaved C-terminal (CT) peptides, which form autoinhibitory complexes in the steady state. However, the detailed mechanism remains elusive.
View Article and Find Full Text PDFAnimal Model Exp Med
January 2025
China Medical University, Shenyang, China.
Cisplatin chemotherapy has been used as the main treatment for different types of cancer. However, cisplatin chemotherapy-induced peripheral neuropathic pain (CIPNP) seriously affects the treatment process and quality of life of patients. In addition, it impacts the underlying mechanism and prevention and treatment strategies, indicating that drug selection and efficacy evaluation need to be further investigated.
View Article and Find Full Text PDFEur J Neurosci
January 2025
Faculty of Medicine, Collegium Medicum, Mazovian Academy in Plock, Plock, Poland.
Chronic migraine (CM) is the ultimate and most burdensome form of the transformation from episodic migraine (EM), called chronification. The mechanism behind migraine chronification is poorly known and difficult to explore as CM has the same spectrum of pathogenesis as EM and the EM-CM transition is bidirectional. Central sensitization (CS) is a key phenomenon in migraine: its mechanisms include disturbed neural plasticity, which is the ability of the nervous system to adapt to endo- and exogenous changes.
View Article and Find Full Text PDFLab Anim
January 2025
Laboratory of Experimental Animals (LAE), Faculty of Veterinary Science, National University of La Plata, Argentina.
Extending an existing animal facility is a challenging process that requires consideration of both engineering and biological aspects. In this sense, integration with ongoing activities must not alter the animals' microbiological condition or welfare, as they usually remain in the facility while these activities occur. The objective of this work was to describe and evaluate the practical biosafety considerations during the enlargement of a specific pathogen-free (SPF) rodent facility.
View Article and Find Full Text PDFVaccines (Basel)
January 2025
Liverna Therapeutics Inc., Zhuhai 519000, China.
Background: Respiratory syncytial virus (RSV) causes the most common type of severe lower respiratory tract infection worldwide, and the fusion (F) protein is a target for neutralizing antibodies and vaccine development. This study aimed to investigate the immunogenicity and efficacy of an mRNA-based RSV vaccine with an F protein sequence.
Methods: We designed an mRNA construct encoding a modified RSV F protein, which was further developed into an LNP-encapsulated mRNA vaccine (LVRNA007).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!