This study investigated the possibility of there being differences in respiratory muscle strength and endurance in elite and competition triathletes who have similar maximal oxygen uptakes (VO(2max)) and ventilatory thresholds (Th(vent)). Five internationally-ranked elite, [mean (SD) age 23.8 (1.4) years] and six nationally- and regionally-ranked competition [age 21.1 (1.1) years] male triathletes performed two successive trials: first an incremental cycle test to assess VO(2max) and Th(vent) and second 20 min of cycling followed by 20 min of running (C-R) at intensities higher than 85% VO(2max). Cardioventilatory data were collected every minute during the two trials, using an automated breath-by-breath system. Maximal expiratory and inspiratory (P(Imax)) strength were assessed before and 10 min after C-R from the functional residual capacity. Respiratory muscle endurance was assessed 1 day before and 30 min after C-R by measuring the time limit (t(lim)). The results showed firstly that during C-R, the competition triathletes had significantly (P < 0.05) higher minute ventilation [mean (SEM) 107.4 (3.1) compared to 99.8 (3.7) l x min(-1)], breathing frequency [44.4 (2.0) compared to 40.2 (3.4) x min(-1)] and heart rate [166 (3) compared to 159 (4) beats x min(-1)] and secondly that after C-R, they had significantly lower P(Imax) [127.1 (4.2) compared to 130.7 (3.0) cmH(2)O] and t(lim) [2:35 (0:29) compared to 4:12 (0:20) min] than the elite triathletes. We conclude that, despite similar VO(2max) and Th(vent), the competition triathletes showed less extensive adaptive mechanisms, including those in the respiratory muscles, than did the elite triathletes. This led to higher ventilation, which appeared to be the cause of the faster development of fatigue in the inspiratory muscles in this group.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00421-002-0637-x | DOI Listing |
Sports Med
January 2025
Aquatics Lab, Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Granada, Spain.
Background: Swimming performance depends on a wide variety of factors; however, the interaction between these factors and their importance varies between events. In sprint events, the characterized pacing underlines its specific development, as swimmers must achieve the highest possible speed while sustaining it to the greatest extent possible.
Objectives: The aim of this review was to identify the key factors underlying sprint swimming performance and to provide in-depth and practical evidence-based information to optimize performance.
J Funct Morphol Kinesiol
December 2024
Unidad de Fisiología del Ejercicio, Centro de Innovación, Clínica MEDS, Santiago 7550615, Chile.
: Assessments of muscle strength help prescribe and monitor training loads in cyclists (e.g., triathletes).
View Article and Find Full Text PDFPhys Ther Sport
January 2025
School of Biosciences and Medicine, University of Surrey, UK. Electronic address:
Objectives: To investigate the frequency and location of reported injuries among ultra-endurance participants competing in different sports.
Design: Cross-sectional.
Method: Ultra-endurance runners, cyclists and triathletes were recruited via a social media advertisement to participate in a web-based questionnaire.
PLoS One
December 2024
Institute of Primary Care, University of Zurich, Zurich, Switzerland.
Background: The IRONMAN® (IM) triathlon is a popular multi-sport, where age group athletes often strive to qualify for the IM World Championship in Hawaii. The aim of the present study was to investigate the location of the fastest IM racecourses for age group IM triathletes. This knowledge will help IM age group triathletes find the best racecourse, considering their strengths and weaknesses, to qualify.
View Article and Find Full Text PDFFront Physiol
November 2024
Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!