The purpose of the study was to investigate the characteristics of shock attenuation during high-speed running. Maximal running speed was identified for each subject [n = 8 males, 25 (SD 4.6) years; 80 (8.9) kg; 1.79 (0.06) m] as the highest speed that could be sustained for about 20 s on a treadmill. During testing, light-weight accelerometers were securely mounted to the surface of the distal antero-medial aspect of the leg and frontal aspect of the forehead. Subjects completed running conditions of 50, 60, 70, 80, 90, and 100% of their maximal speeds with each condition lasting about 20 s. Stride length, stride frequency, leg and head peak impact acceleration were recorded from the acceleration profiles. Shock attenuation was analyzed by extracting specific sections of the acceleration profiles and calculating the ratio of head to leg power spectral densities across the 10-20 Hz frequency range. Both stride length and stride frequency increased across speeds (P < 0.05) and were correlated with running speed (stride length r = 0.92, stride frequency r = 0.89). Shock attenuation increased about 20% per m x s(-1) across speeds (P< 0.05), which was similar to the 17% increase in stride length per m x s(-1). Additionally, shock attenuation was correlated with stride length (r = 0.71) but only moderately correlated with stride frequency (r = 0.40) across speeds. It was concluded that shock attenuation increased linearly with running speed and running kinematic changes were characterized primarily by stride length changes. Furthermore, the change in shock attenuation was due to increased leg not head peak impact acceleration across running speeds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00421-002-0646-9 | DOI Listing |
Oncol Lett
March 2025
Department of Gastrointestinal and Pediatric Surgery, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan.
The prognostic value of negative regulators of ferroptosis in patients with colorectal cancer (CRC) has not yet been fully elucidated. The present study performed a systematic identification and selection of candidate negative regulators of ferroptosis using The Cancer Genome Atlas data cohort (n=367), followed by clinical validation through immunohistochemistry of samples from patients with CRC (n=166) and further evaluation. analysis identified specific light-chain subunit of the cystine/glutamate antiporter, AIFM2, NFE2L2, FTH1, GLS2, glutathione peroxidase 4 (GPX4) and heat shock protein β-1 (HSPB1) genes as possible candidates.
View Article and Find Full Text PDFShock
January 2025
The University of Alabama, Birmingham, Department of Surgery and Center for Injury Science, Division of Trauma and Acute Care Surgery, Birmingham, AL.
Introduction: Trauma and hemorrhagic shock (T/HS) are associated with multiple organ injury. Antithrombin (AT) has anti-inflammatory and organ protective activity through its interaction with endothelial heparan sulfate containing a 3-O-sulfate modification. Our objective was to examine the effects of T/HS on 3-O-sulfated (3-OS) heparan sulfate expression and determine whether AT-heparan sulfate interactions are necessary for its anti-inflammatory properties.
View Article and Find Full Text PDFVaccine X
January 2025
ALPS Global Holding Berhad, The ICON, East Wing Tower, No. 1, Jalan 1/68F, Off Jalan Tun Razak, Kuala Lumpur 50400, Malaysia.
Dengue fever is caused by the mosquito-borne dengue virus (DENV), which is endemic in more than 100 countries. Annually, there are approximately 390 million dengue cases, with a small subset manifesting into severe illnesses, such as dengue haemorrhagic fever or dengue shock syndrome. Current treatment options for dengue infections remain supportive management due to the lack of an effective vaccine and clinically approved antiviral.
View Article and Find Full Text PDFCrit Care
January 2025
Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, China.
Despite intensive clinical and scientific efforts, the mortality rate of sepsis remains high due to the lack of precise biomarkers for patient stratification and therapeutic guidance. Interleukin 40 (IL-40), a novel cytokine with immune regulatory functions in human diseases, was elevated at admission in two independent cohorts of patients with sepsis. High levels of secreted IL-40 in septic patients were positively correlated with PCT, CRP, lactate (LDH), and Sequential Organ Failure Assessment (SOFA) scores, in which IL-40 levels were used to stratify the early death of critically ill patients with sepsis.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, Biological Science Research Center, Southwest University, Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing, China. Electronic address:
N6-methyladenosine (m6A) is the most prevalent internal modification on mRNA and plays critical roles in various biological processes including virus infection. It has been shown that m6A methylation is able to regulate virus proliferation and host innate immunity in mammals and plants, however, this antiviral defense in insects is largely unknown. Here we investigated function of m6A and its associated methyltransferases in nucleopolyhedrovirus (BmNPV) infection in silkworm.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!