The cochlear stria vascularis produces the endolymph and generates the endocochlear DC potential, two indispensable ingredients of an auditory transduction process. The marginal cell, one of the several cell types constituting the stria vascularis, is called 'the dark cell' on the basis of its appearance by transmission electron microscopy (TEM). To clarify whether this commonly observed 'dark appearance' is a normal characteristic of marginal cells, as conjectured in the literature, or an experimental artifact, we developed an in vivo fixation method for minimizing ischemic tissue damages. While under sustained systemic circulation with oxygenated blood, the stria vascularis of gerbils was chemically fixed by perilymphatic perfusion with a fixative, and the stria vascularis was observed by TEM. In contrast to a number of previous reports, the cytoplasm of marginal cells was not dark, and quantitative analysis showed that the difference between the cytoplasmic electron density of marginal cells and that of intermediate cells (another type of strial cells) was not statistically significant. For comparison, the gerbils were allowed to undergo 3 min of ischemia following decapitation. Under these conditions, marginal cells showed typical 'dark appearance', as reported previously, and their cytoplasmic electron density was 1.7 times higher than that of the intermediate cells. In addition, the volume of mitochondria in marginal cells undergoing 3 min of ischemia was higher than that fixed in vivo. We therefore conclude that the widely recognized 'dark cell' appearance of marginal cells following conventional fixation procedures reflects cell injury due to ischemia, which is inherent in the standard fixation procedures, but can be avoided by our fixation protocol here introduced.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00441-002-0597-9 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!