In vivo random mutagenesis of the polyhydroxyalkanoate (PHA) synthase gene from Aeromonas punctata was performed employing the mutator strain Escherichia coli XL1-Red. About 200,000 mutants were screened on Nile red-containing medium and five mutants with enhanced fluorescence were selected. Four of these mutants exhibited enhanced in vivo and in vitro PHA synthase activity. Mutant M1, which carried the single mutation F518I, showed a five-fold increase in specific PHA synthase activity, whereas the corresponding mediated PHA accumulation increased by 20%, as compared with the wild-type PHA synthase. Mutant M2, which carried the single mutation V214G, showed a two-fold increase in specific PHA synthase activity and PHA accumulation only increased by 7%. Overall, the in vitro activities of the overproducing mutants ranged from 1.1- to 5-fold more than the wild-type activity, whereas the amounts of accumulated PHA ranged over 107-126% of that of the wild type. Moreover, all mutants mediated synthesis of PHAs with an increased weight average molar mass, but the molar fractions of 3-hydroxybutyrate and 3-hydroxyhexanoate remained almost constant. In vivo random mutagenesis proved to be a versatile tool to isolate mutants exerting improved properties with respect to PHA biosynthesis.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00253-002-1035-3DOI Listing

Publication Analysis

Top Keywords

pha synthase
24
synthase activity
12
pha
11
aeromonas punctata
8
polyhydroxyalkanoate pha
8
vivo random
8
random mutagenesis
8
mutant carried
8
carried single
8
single mutation
8

Similar Publications

Article Synopsis
  • Researchers are tackling the low yield of polyhydroxyalkanoates (PHA) by exploring the use of δ-valerolactone (DVL) and plant oil to boost production without pre-treatment.
  • In their study, they found that PhaC enzyme effectively incorporated 5-hydroxyvalerate (5HV) into the PHA, resulting in significant biomass and synthesis during fed-batch fermentation.
  • The new PHAs showed improved properties, such as lower melting points and slower degradation rates, demonstrating potential benefits for polymer applications.
View Article and Find Full Text PDF

Comparative binding affinity and stability of PHA synthase from and with acetyl and acyl substrates.

J Biosci

October 2024

Department of Biological Sciences and Engineering, NSUT, New Delhi 110078, India.

Plastic productionwas almost 400.3million tonsworldwide in 2022,while bioplastics only accounted for 0.56% of the global plastic production.

View Article and Find Full Text PDF

Bioplastic production by harnessing cyanobacteria-rich microbiomes for long-term synthesis.

Sci Total Environ

December 2024

GEMMA-Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya-BarcelonaTech, c/ Jordi Girona 1-3, Building D1, E-08034 Barcelona, Spain. Electronic address:

Departing from the conventional axenic and heterotrophic cultures, our research ventures into unexplored territory by investigating the potential of photosynthetic microbiomes for polyhydroxybutyrate (PHB) synthesis, a biodegradable polyester that presents a sustainable alternative to conventional plastics. Our investigation focused on a cyanobacteria-enriched microbiome, dominated by Synechocystis sp. and Synechococcus sp.

View Article and Find Full Text PDF

Hints from nature for a PHA circular economy: Carbon synthesis and sharing by Pseudomonas solani GK13.

N Biotechnol

December 2024

Polymer Biotechnology Lab, Biological Research Center Margarita Salas, Spanish National Research Council (CIB-CSIC), Madrid, Spain; Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-CSIC (SusPlast-CSIC), Madrid, Spain. Electronic address:

Polyhydroxyalkanoates (PHAs) are a well-known group of biodegradable and biocompatible bioplastics that are synthesised and stored by microorganisms as carbon and energy reservoirs. Extracellular PHA depolymerases (ePhaZs), secreted by a limited range of microorganisms, are the main hydrolytic enzymes responsible for their environmental degradation. Pseudomonas sp.

View Article and Find Full Text PDF

Microbial production of an aromatic homopolyester.

Trends Biotechnol

November 2024

Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; KAIST Institute for the BioCentury, KAIST, Daejeon 34141, Republic of Korea; BioProcess Engineering Research Center, KAIST, Daejeon 34141, Republic of Korea; Graduate School of Engineering Biology, KAIST, Daejeon 34141, Republic of Korea. Electronic address:

We report the development of a metabolically engineered bacterium for the fermentative production of polyesters containing aromatic side chains, serving as sustainable alternatives to petroleum-based plastics. A metabolic pathway was constructed in an Escherichia coli strain to produce poly[d-phenyllactate(PhLA)], followed by three strategies to enhance polymer production. First, polyhydroxyalkanoate (PHA) granule-associated proteins (phasins) were introduced to increase the polymer accumulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!