Heterologous genes for xylose utilization were introduced into an industrial Saccharomyces cerevisiae, strain A, with the aim of producing fuel ethanol from lignocellulosic feedstocks. Two transformants, A4 and A6, were evaluated by comparing the performance in 4-l anaerobic batch cultivations to both the parent strain and a laboratory xylose-utilizing strain: S. cerevisiae TMB 3001. During growth in a minimal medium containing a mixture of glucose and xylose (50 g/l each), glucose was preferentially consumed. During the first growth phase on glucose, the specific growth rates were 0.26, 0.32, 0.27 and 0.30 h(-1) for strains TMB 3001, A (parental strain), A4, and A6, respectively. The specific ethanol productivities were 0.04, 0.13, 0.04 and 0.03 g/g.per hour, for TMB 3001, A, A4 and A6, respectively. The specific xylose consumption rates were 0.06, 0.21 and 0.14 g/g.per hour, respectively for strains TMB 3001, A4 and A6. Xylose consumption resulted mainly in the formation of xylitol, with biomass and ethanol being minor products. The metabolite profile of intermediates in the pentose phosphate pathway and key glycolytic intermediates were determined during growth on glucose and xylose, respectively. The metabolite pattern differed depending on whether glucose or xylose was utilized. The levels of intracellular metabolites were higher in the industrial strains than in the laboratory strain during growth on xylose.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00253-002-1056-y | DOI Listing |
J Immunother Cancer
March 2024
Division of Hemato-Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University Anam Hospital, Seoul, Republic of Korea
Background: Immune-modulating antibodies targeting programmed cell death protein 1/programmed death-ligand 1 (PD-1/PD-L1) have demonstrated promising antitumor efficacy in various types of cancers, especially highly mutated ones. Genetic alterations in DNA damage response and repair (DDR) genes can lead to genetic instability, often accompanied by a high tumor mutation burden (TMB). However, few studies have validated the aberration of DDR genes as a predictive biomarker for response to immune-modulating antibodies.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2023
School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China.
In recent years, there has been a notable surge of interest in the fields of organic and pharmaceutical research about photocatalysts (PCs) and photosensitizers (PSs). In this study, a 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) molecule adorned with quaternary ammonium (TMB) functionality was meticulously designed and synthesized. This compound has remarkable characteristics such as exceptional water solubility, great optical qualities, and commendable photostability.
View Article and Find Full Text PDFGels
September 2021
Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Jalan Universiti, Bandar Sunway, Subang Jaya 47500, Malaysia.
Sensors (Basel)
October 2020
Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain.
Photoacoustic imaging is attracting a great deal of interest owing to its distinct advantages over other imaging techniques such as fluorescence or magnetic resonance image. The availability of photoacoustic probes for reactive oxygen and nitrogen species (ROS/RNS) could shed light on a plethora of biological processes mediated by these key intermediates. Tetramethylbenzidine (TMB) is a non-toxic and non-mutagenic colorless dye that develops a distinctive blue color upon oxidation.
View Article and Find Full Text PDFAnal Bioanal Chem
February 2019
AptaBharat Innovation Pvt. Ltd., Interim Incubator of Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana, 121001, India.
Despite of various advancements in biosensing, a rapid, accurate, and on-site detection of a bacterial pathogen is a real challenge due to the lack of appropriate diagnostic platforms. To address this unmet need, we herein report an aptamer-mediated tunable NanoZyme sensor for the detection of Pseudomonas aeruginosa, an infectious bacterial pathogen. Our approach exploits the inherent peroxidase-like NanoZyme activity of gold nanoparticles (GNPs) in combination with high affinity and specificity of a Pseudomonas aeruginosa-specific aptamer (F23).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!