Some biotic and abiotic soil components are able to catalyze phenol oxidation, producing water-insoluble polymers. In phenol-polluted water bodies, this phenomenon could be exploited to prevent phenol dispersion. The reaction kinetics of phenol polymerization catalyzed by soil samples drawn from unsaturated and aquifer layers was measured in slurry, aerated batch reactors. Catechol was used as a model phenol. The observed catalytic activity is essentially abiotic and can be attributed to inorganic soil components. The rate of phenol removal is first-order with respect to both catechol and soil concentration. Soil activity towards other phenolic compounds was tested, as well. Diphenols show the highest reactivity. Comparisons were performed with the enzymatic activity of phenol oxidases-containing mushroom tissues whose use has been envisaged in the treatment of phenol-polluted waters. The use of phenol oxidases can complement the intrinsic activity of soil for the removal of recalcitrant phenols.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0043-1354(02)00002-7 | DOI Listing |
Sci Total Environ
January 2025
Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India. Electronic address:
This study investigates the potential impact of future climate scenarios designated by different shared socioeconomic pathways (SSPs) on vegetation health. Considering the entire Indian mainland as the study region, which exhibits a diverse range of climate and vegetation regimes, we analysed long-term past (1981-2020) and future (2021-2100) changes in vegetation greenness across seven vegetation types and four seasons. In order to gain insight into the intricate interrelationships between vegetation and hydroclimatic factors (soil moisture, precipitation, solar radiation, and temperature), a Standardized Vegetation Index (SVI) is used as a proxy for vegetation health, and a bivariate copula-based probabilistic model is developed incorporating a Combined Climate Index (CCI) derived through Supervised Principal Component Analysis (SPCA) and the SVI.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China. Electronic address:
Thallium (Tl), recognized for its high toxicity, is subject to stringent international regulations regarding its permissible concentrations at ultra-trace levels. In this study, titanium dioxide (TiO) was integrated with potassium (K)-rich biochar to create TiO/biochar (TiO/BC) composites for synergistic enhancement in ultra-trace Tl(I) removal, focusing on achieving concentration below the rigorous local threshold of 0.1 μg/L for drinking water.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
Aix-Marseille Université-CNRS UMR 7283, Institut de Microbiologie de la Méditerranée and Turing Center for Living Systems, Marseille 13009, France.
Despite growing awareness of their importance in soil ecology, the genetic and physiological traits of bacterial predators are still relatively poorly understood. In the course of a predator evolution experiment, we identified a class of genotypes leading to enhanced predation against diverse species. RNA-seq analysis demonstrated that this phenotype is linked to the constitutive activation of a predation-specific program.
View Article and Find Full Text PDFJ Bacteriol
January 2025
Department of Microbiology, University of Wisconsin-La Crosse, La Crosse, Wisconsin, USA.
Unlabelled: has numerous two-component signaling systems (TCSs), many of which regulate the complex social behaviors of this soil bacterium. A subset of TCSs consists of NtrC-like response regulators (RRs) and their cognate histidine sensor kinases (SKs). We have previously demonstrated that a multi-component, phosphorelay TCS named NmpRSTU plays a role in social motility.
View Article and Find Full Text PDFAntioxid Redox Signal
January 2025
Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, Granada, Spain.
To investigate the role of the RegSR-NifA regulatory cascade in the oxygen control of nitric oxide (NO) reduction in the soybean endosymbiont . We have performed an integrated study of expression and NO reductase activity in , , , , and mutants in response to microoxia (2% O) or anoxia. An activating role of RegR and NifA was observed under anoxia.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!