Aortic injury and cardiac tamponade as a complication of subclavian venous catheterization.

Anesthesiology

Surgical Intensive Care Unit Pierre Viars, Department of Anesthesiology and Intensive Care, University-Hospital Pitié-Salpêtrière, University of Paris VI, Paris, France.

Published: June 2002

Download full-text PDF

Source
http://dx.doi.org/10.1097/00000542-200206000-00038DOI Listing

Publication Analysis

Top Keywords

aortic injury
4
injury cardiac
4
cardiac tamponade
4
tamponade complication
4
complication subclavian
4
subclavian venous
4
venous catheterization
4
aortic
1
cardiac
1
tamponade
1

Similar Publications

Background: Acute type A aortic dissection (ATAAD) is a life-threatening condition that often requires total aortic arch replacement (TAR) combined with frozen elephant trunk (FET) implantation. Despite advancements in surgical techniques and preoperative management, postoperative acute kidney injury (AKI) remains a prevalent complication that significantly affects patient prognosis, particularly severe AKI. The aim of this study was to investigate the predictive value of perioperative lactate levels in severe postoperative AKI after TAR.

View Article and Find Full Text PDF

Cystic cuboid adenomatous malformations (CCAM) are congenital pulmonary lesions, usually benign, that can progress into malignancy. Bronchopulmonary sequestration (BPS) is another type of malformation that consistsof an ectopic pulmonary tissue mass that doesn't participate in blood-gas exchanges, with vascularization provided by anomalous branches of the thoracic aorta. Hybrid lesions are lesions that have histological features of CCAM but with systemic vascularization, a pathognomonic sign of BPS.

View Article and Find Full Text PDF

Sulfur Dioxide Alleviates Aortic Dissection Through Inhibiting Vascular Smooth Muscle Cell Phenotype Switch, Migration, and Proliferation miR-184-3p/Cyp26b1 Axis.

Antioxid Redox Signal

January 2025

Division of Vascular Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), The First Affiliated Hospital, Sun Yat Sen University, Guangzhou, China.

Abnormal migration and proliferation of vascular smooth muscle cells (VSMCs) are considered early events in the onset of thoracic aortic dissection (TAD). Endogenous sulfur dioxide (SO), primarily produced by aspartate aminotransferase (AAT1) in mammals, has been reported to inhibit the migration and proliferation of VSMCs. However, the role of SO in the development of TAD remains unclear.

View Article and Find Full Text PDF

Single-Cell Insights Into Cellular Response in Abdominal Aortic Occlusion-Induced Hippocampal Injury.

CNS Neurosci Ther

January 2025

Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Center of Stroke, Beijing Institute of Brain Disorder, Capital Medical University, Beijing, China.

Objective: Ischemia-reperfusion of the abdominal aorta often results in damage to distant organs, such as the heart and brain. This cellular heterogeneity within affected tissues complicates the roles of specific cell subsets in abdominal aorta occlusion model (AAO) injury. However, cell type-specific molecular pathology in the hippocampus after ischemia is poorly understood.

View Article and Find Full Text PDF

Background: As hypothermic circulatory arrest (HCA) is being more frequently induced in patients undergoing aortic arch surgery, its safety at different degrees has become a crucial area of study. The aim of this study was to assess the surgical outcomes of mild hypothermic circulatory arrest (MI-HCA) during aortic arch surgery.

Methods: Acute type A aortic dissection (ATAAD) patients who underwent total arch replacement (TAR) and frozen elephant trunk (FET) surgery between January 2014 and December 2023 were enrolled in this study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!