Mass spectrometry has become the technology of choice for detailed identification of proteins in complex mixtures. Although electrophoretic separation, proteolytic digestion, mass spectrometric analysis of unseparated digests, and database searching have become standard methods in widespread use, peptide sequence information obtained by collision-induced dissociation and tandem mass spectrometry is required to establish the most comprehensive and reliable results. Most tandem mass spectrometers in current use employ electrospray ionization. In this work a novel tandem mass spectrometer employing matrix-assisted laser desorption ionization-time-of-flight/time-of-flight operating at 200 Hz has been used to identify proteins interacting with known nucleoporins in the nuclear pore complex of Saccharomyces cerevisiae. Proteins interacting with recombinant proteins as bait were purified from yeast extracts and then separated by one-dimensional SDS-PAGE. Although peptide mass fingerprinting is sometimes sufficient to identify proteins, this study shows the importance of employing tandem mass spectrometry for identifying proteins in mixtures or as covalently modified forms. The rules for incorporating these features into MS-Tag are presented. In addition to providing an evaluation of the sensitivity and overall quality of collision-induced dissociation spectra obtained, standard conditions for ionization and fragmentation have been selected that would allow automatic data collection and analysis, without the need to adjust parameters in a sample-specific fashion. Other considerations essential for successful high throughput protein analysis are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/mcp.m200027-mcp200 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!