Ischaemia may play an important role in peritumoural brain oedema and swelling, but little data exist so far on brain tissue oxygenation adjacent to a tumour mass. We have monitored brain tissue oxygen tension (ptiO2) and brain tissue CO2 tension (ptiCO2) in 19 patients undergoing craniotomy for resection of a brain tumour using a multiparameter sensor placed in the brain parenchyma. Accurate placement of this probe in the peritumoural area was accomplished with the aid of a 3-D neuronavigation system. Due to various problems we obtained useful data in only 13/19 patients. The presence of brain swelling was associated with a significant rise in ptiO2 upon opening of the dura from 7.1 +/- 7.8 to 23.6 +/- 14.7 mm Hg. The average ptiO2 before tumour resection was 18.1 +/- 10.8 mm Hg. A significant improvement in ptiO2 occurred after tumour resection to an average ptiO2 of 29.7 +/- 15.2 mm Hg. From these preliminary data, we conclude that ptiO2 is depressed in the peritumoural area, and improves following tumour resection. Stereotactic placement of sensors for intraoperative ptiO2 monitoring is feasible and may enhance data quality. Nevertheless, the high incidence of failures with this type of sensor remains a matter of concern.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-3-7091-6738-0_82 | DOI Listing |
Neurol Neuroimmunol Neuroinflamm
March 2025
Neuroimmunology Laboratory and Neuroimmunology Research Section, IRCCS Mondino Foundation, Pavia, Italy.
Background And Objectives: Antibodies to proteolipid protein-1 (PLP1-IgG), a major central myelin protein also expressed in the peripheral nervous system (PNS) as the isoform DM20, have been previously identified mostly in patients with multiple sclerosis (MS), with unclear clinical implications. However, most studies relied on nonconformational immunoassays and included few patients with non-MS CNS autoimmune demyelinating disorders (ADDs). We aimed to investigate conformational PLP1-IgG in the whole ADD spectrum.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Anatomy, Nihon University School of Dentistry, Tokyo, Japan.
This study presents a novel method for creating customized brain slice matrices using Computer-Aided Design (CAD) and 3D printing technology. Brain Slice Matrices are essential jigs for the reproducible preparation of brain tissue sections in neuroscience research. Our approach leverages the advantages of 3D printing, including design flexibility, cost-effectiveness, and rapid prototyping, to produce custom-made brain matrices based on specific morphometric measurements.
View Article and Find Full Text PDFJ Chem Inf Model
January 2025
Dept. of Engineering, King's College London, London WC2R 2LS, U.K.
Permeability is a measure of the degree to which cells can transport molecules across biological barriers. Units of permeability are distance per unit time (typically cm/s), where accurate measurements are needed to define drug delivery in homeostasis and to model dysfunction occurring during disease. This perspective offers a set of community-led guidelines to benchmark permeability data across multidisciplinary approaches and different biological contexts.
View Article and Find Full Text PDFFree Neuropathol
January 2024
Department of Pathology, Nash Family Department of Neuroscience, Department of Artificial Intelligence & Human Health, Neuropathology Brain Bank & Research CoRE, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
This review highlights a collection of both diverse and highly impactful studies published in the previous year selected by the author from the neurodegenerative neuropathology literature. As with previous reviews in this series, the focus is, to the best of my ability, to highlight human tissue-based experimentation most relevant to experimental and clinical neuropathologists. A concerted effort was made to balance the selected studies across neurodegenerative disease categories, approaches, and methodologies to capture the breadth of the research landscape.
View Article and Find Full Text PDFBrain Spine
October 2024
Department of Neurosurgery, University Hospital of Dijon Bourgogne, Dijon, France.
Introduction: The introduction of intraoperative fluorophores represented a significant advancement in neurosurgical practice. Nowadays they found different applications: in oncology to improve the visualization of tumoral tissue and optimize resection rates and in vascular neurosurgery to assess the exclusion of vascular malformations or the permeability of bypasses, with real-time intraoperative evaluations.
Research Question: A comprehensive knowledge of how fluorophores work is crucial to maximize their benefits and to incorporate them into daily neurosurgical practice.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!