Bacteria of the genus Brucella, responsible for brucellosis, are pathogenic for animals and occasionally for humans. The cost of this widespread zoonotic infection is still very high for the community. Over the last few years, there have been advances in two main domains. First, the Brucella genome has been shown to be complex, with two circular chromosomes. Second, recent data on the virulence of Brucella suggest common mechanisms shared with plant pathogens and endosymbionts of the alpha-proteobacteria. Understanding virulence will have practical repercussions in the realms of vaccine development and, perhaps, development of new antibiotics. Two complete Brucella genome sequences are now available and will be a gold mine of information to guide future research.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0369-8114(02)00313-9 | DOI Listing |
Front Cell Infect Microbiol
January 2025
Department of Spine Surgery, Fuzhou Second General Hospital, Fuzhou, Fujian, China.
Background: This study aimed to evaluate the efficacy of metagenomic next-generation sequencing (mNGS) technology for identifying pathogens associated with spinal infection (SI).
Methods: A retrospective analysis was conducted on clinical data from 193 patients with suspected SI between August 2020 and September 2024. Based on histopathological results, the patients were divided into the SI group (n=162) and the non-SI group (n=31).
Front Cell Infect Microbiol
January 2025
The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China.
Objective: To establish a rapid detection method for canine using recombinase-aided amplification (RAA) technology.
Methods: The outer membrane protein 25 gene fragment (Omp25) of canis was targeted. Primers and fluorescent probes were designed and synthesized, and recombinant plasmids were constructed as standards.
BMC Microbiol
January 2025
National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
Human brucellosis is a re-emerging disease in Sichuan Province, China. In this study, bacteriology, conventional bio-typing, multi-locus sequence typing (MLST), and multiple locus variable-number tandem repeat analysis (MLVA) were applied to preliminarily characterize the strains in terms of genetic diversity and epidemiological links. A total of 101 Brucella strains were isolated from 16 cities (autonomous prefectures) from 2014 to 2021, and all of the strains were identified as Brucella melitensis bv.
View Article and Find Full Text PDFWaste Manag
January 2025
Guangdong Provincial Key Lab of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology/ Guangxi Collaborative Innovation Center of Modern Sericulture and Silk, Hechi University, Hechi 546300, China. Electronic address:
Sericulture waste poses significant challenges to industrial and environmental safety. Black soldier fly larvae (BSFL) offer a promising solution for organic waste management by converting it into insect protein. This study aimed to develop a microbial fermented method for utilizing sericulture waste to feed BSFL and explore the underlying mechanisms.
View Article and Find Full Text PDFCurr Microbiol
January 2025
Agricultural Research, Education and Extension Organization (AREEO), Razi Vaccine and Serum Research Institute (RVSRI), Karaj, Iran.
Brucellosis, a zoonotic disease caused by Brucella spp. globally, is of great significance not only to livestock but also to public health. The most significant of the twelve species is Brucella melitensis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!