In many rhodopsin-like G-protein-coupled receptors, agonist binding to a cluster of aromatic residues in TM6 may promote receptor activation by altering the configuration of the TM6 Pro-kink and by the subsequent movement of the cytoplasmic end of TM6 away from TM3. We hypothesized that the highly conserved Cys(6.47), in the vicinity of the conserved Pro(6.50), modulates the configuration of the aromatic cluster and the TM6 Pro-kink through specific interactions in its different rotamer configurations. In the beta(2) adrenergic receptor, mutation of Cys(6.47) to Thr, which in an alpha-helix has a different rotamer distribution from Cys and Ser, produced a constitutively active receptor, whereas the Ser mutant was similar to wild-type receptor. Use of the biased Monte Carlo technique of Conformational Memories showed that the rotamer changes among Cys/Ser/Thr(6.47), Trp(6.48), and Phe(6.52) are highly correlated, representing a rotamer "toggle switch" that may modulate the TM6 Pro-kink. Differential modulation of the accessibility of Cys(6.47) and an engineered Cys(6.52) in wild type and a constitutively active background provides experimental support for the association of this rotamer switch with receptor activation.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M206801200DOI Listing

Publication Analysis

Top Keywords

receptor activation
12
tm6 pro-kink
12
beta2 adrenergic
8
adrenergic receptor
8
constitutively active
8
receptor
6
rotamer
6
tm6
5
activation modulation
4
modulation proline
4

Similar Publications

Background: Uterine endometrial natural killer (uNK) cells represent major leukocytes in the mid-secretory phase of the cell cycle, and their number is further increased during early pregnancy. The activating and inhibitory receptors expressed on their surface mediate various functions of uNK cells, such as cytotoxicity, cytokine production, spiral artery remodeling, and self-recognition.

Methods: This study reviewed the most recent information (PubMed database, 175 articles included) regarding the activating and inhibitory receptors on uNK cells in human females with healthy pregnancies and the evidence indicating their significance in various reproductive failures.

View Article and Find Full Text PDF

Objective: Juvenile dermatomyositis (JDM) is a complex autoimmune disease, and its pathogenesis remains poorly understood. Building upon previous research on the immunological and inflammatory aspects of JDM, this study aims to investigate the role of pyroptosis in the pathogenesis of JDM using a comprehensive bioinformatics approach.

Methods: Two microarray datasets (GSE3307 and GSE11971) were obtained from the Gene Expression Omnibus database, and a list of 62 pyroptosis-related genes was compiled.

View Article and Find Full Text PDF

fruit extract preadipocyte differentiation inhibition in 3T3-L1 cells.

J Taibah Univ Med Sci

December 2024

Department of Veterinary Pre-Clinical Science, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.

Objective: Concerns over the increasing number of obese individuals and the associated health risks have prompted therapeutic option explorations. Similarly, this study aimed to establish fruit extract (SCFE) anti-adipogenic attributes in 3T3-L1 cells.

Methods: The polyphenolic compounds in SCFE were identified with Reverse phase-high performance liquid chromatography (RP-HPLC).

View Article and Find Full Text PDF

Introduction: The mechanism of remimazolam, a benzodiazepine that activates γ-aminobutyric acid a (GABAa) receptors, in cerebral ischemia/reperfusion (I/R) injury is not well understood. Therefore, we explored whether remimazolam activates protein kinase B (AKT)/glycogen synthase kinase-3β (GSK-3β)/nuclear factor erythroid 2-related factor 2 (NRF2) to attenuate brain I/R injury in transcerebral I/R-injured rats and transoxygenic glucose deprivation/reperfusion (OGD/R)-injured SY5Y cells.

Material And Methods: Remimazolam was added at the beginning of cell and rat reperfusion, and the PI3K/AKT inhibitor LY294002 was added to inhibit the AKT/GSK-3β/NRF2 pathway 24 h before cellular OGD/R treatment and 30 min before rat brain I/R treatment.

View Article and Find Full Text PDF

Spinal astrocyte-derived interleukin-17A promotes pain hypersensitivity in bone cancer mice.

Acta Pharm Sin B

December 2024

Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China.

Spinal microglia and astrocytes are both involved in neuropathic and inflammatory pain, which may display sexual dimorphism. Here, we demonstrate that the sustained activation of spinal astrocytes and astrocyte-derived interleukin (IL)-17A promotes the progression of mouse bone cancer pain without sex differences. Chemogenetic or pharmacological inhibition of spinal astrocytes effectively ameliorates bone cancer-induced pain-like behaviors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!