A method has been elaborated to isolate and purify up to homogeneity a novel membrane glycoprotein containing a glycosyl-phosphatidylinositol (GPI) anchor by means of salting out with ammonium sulfate (40-80% saturation), followed by preparative SDS-PAGE, chromatography and acetone precipitation. The preparation obtained was homogeneous upon electrophoresis in the presence of 0.1% SDS after reduction with 2-mercaptoethanol. It is protein-soluble at its isoelectrical point (pH 5.5) with molecular mass of 65,000 daltons. The isolated protein is linked to the membrane via glycosyl-phosphatidylinositol susceptible to cleavage by purified phospholipase C. The hydrophobic portion of the glycolipid membrane anchor of the protein was radiolabeled with the photoactivated reagent 3-(trifluoromethyl)-3-(m-[(125)I]iodophenyl)diazirine and hydrolyzed with glycosyl-phosphatidylinositol-specific phospholipase C, followed by enzymatic deacetylation of the remaining lipid. Thin-layer chromatography showed that the generated radiolabeled fragment migrates with the same mobility as that of variant surface glycoprotein (VSG), obtained in the same manner. In this study we describe a novel erythrocyte membrane GPI-linked protein with the structural feature of an anchor that, in contrast to other GPI-linked erythrocyte proteins, has a non-acetylated inositol ring and diacylglycerol rather than alkyl-acyl glycerol as a lipid tail of the anchor.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M202416200 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!