The photochemical deuterium incorporation at the 2'- and 4'-positions of 2-phenylphenol (4) and equivalent positions of related compounds has been studied in D(2)O (CH(3)OD)-CH(3)CN solutions with varying D(2)O (CH(3)OD) content. Predominant exchange was observed at the 2'-position with an efficiency that is independent of D(2)O (MeOD) content. Exchange at the 2'-position (but not at the 4'-position) was also observed when crystalline samples of 4-OD were irradiated. Data are presented consistent with a mechanism of exchange that involves excited-state intramolecular proton transfer (ESIPT) from the phenol to the 2'-carbon position of the benzene ring not containing the phenol, to generate the corresponding keto tautomer (an o-quinone methide). This is the first explicit example of a new class of ESIPT in which an acidic phenolic proton is transferred to an sp(2)-hybridized carbon of an aromatic ring. The complete lack of exchange observed for related substrates 6-9 and for planar 4-hydroxyfluorene (10) is consistent with a mechanism of ESIPT that requires an initial hydrogen bonding interaction between the phenol proton and the benzene pi-system. Similar exchange was observed for 2,2'-biphenol (5), suggesting that this new type of ESIPT is a general reaction for unconstrained 2'-aryl-substituted phenols and other related hydroxyarenes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja0267831DOI Listing

Publication Analysis

Top Keywords

proton transfer
12
exchange observed
12
excited-state intramolecular
8
intramolecular proton
8
aromatic ring
8
consistent mechanism
8
proton
5
observed
5
exchange
5
type excited-state
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!