The Raman and infrared spectra of solid K2(12)C2O4 x H2O are reported together with, for the first time, the corresponding Raman and infrared spectra of solid K2(13)C2O4 x H2O. Raman spectra of aqueous solutions of both isotopomers are also reported. In the solid state the oxalate anion is planar with D2h symmetry in this salt, whereas in aqueous solution the Raman spectra of the anion are best interpreted on the basis of D2d symmetry. The Raman spectra of solid (NH4)2(12)C2O4 x H2O and (NH4)2(13)C2O4 x H2O, in which the oxalate anion is twisted from planarity by 28 degrees about the CC bond, have also been recorded. Several reassignments have been made. The harmonic force field for the oxalate anion in the D2h, D2 and D2d geometries has been determined in part, and approximate values of key valence force constants determined. All the observed band wavenumbers and 12C/13C isotopic shifts are well reproduced by the force fields. The potential energy distribution of the totally symmetric normal modes of planar oxalate indicates that each mode consists of extensively mixed symmetry corrdinates and that the labels previously used for the bands seen here at 475 and 879 cm(-1) would better be described as v(CC) and deltaS(CO2), respectively, putting them in the same wavenumber order as v(NN) and deltaS(NO2) for the isoelectronic and isostructural molecule N2O4. The stretching force constants of N2O4 and planar C2O4(2-) are established to be in the order f(NN) < f(CC) and f(NO) > f(CO), consistent with the known relative bond lengths.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s1386-1425(01)00635-7DOI Listing

Publication Analysis

Top Keywords

raman infrared
12
solid state
12
spectra solid
12
raman spectra
12
oxalate anion
12
force field
8
h2o
8
k212c2o4 h2o
8
k213c2o4 h2o
8
h2o solid
8

Similar Publications

The analysis of Raman and Infrared (IR) phonons in monolayered tetragonal (Sr, Ba)HfO compounds, which exhibit D symmetry and belong to the I4/mmm phase of space group 139 with Z = 2, has been conducted using normal coordinates. The SrHfO and BaHfO compounds are the first members of the Ruddlesden-Popper (RP) series denoted as (Sr, Ba)HfO with n = 1. Nine Short-Range Force Constants (SRFC) have been included in theoretical calculations to analyze the optical phonons of SrHfO and BaHfO compounds within the I4/mmm phase.

View Article and Find Full Text PDF

Fabrication of hierarchical sapphire nanostructures using ultrafast laser induced morphology change.

Nanotechnology

January 2025

Walker Department of Mechanical Engineering, The University of Texas at Austin, 204 E. Dean Keeton St., Austin, Texas, 78712-1139, UNITED STATES.

Sapphire is an attractive material in photonic, optoelectronic, and transparent ceramic applications that stand to benefit from surface functionalization effects stemming from micro/nanostructures. Here we investigate the use of ultrafast lasers for fabricating nanostructures in sapphire by exploring the relationship between irradiation parameters, morphology change, and selective etching. In this approach an ultrafast laser pulse is focused on the sapphire substrate to change the crystalline morphology to amorphous or polycrystalline, which is characterized by examining different vibrational modes using Raman spectroscopy.

View Article and Find Full Text PDF

The vibron behavior of hydrogen bears significant importance for understanding the phases of solid hydrogen under high pressure. In this work, we reveal an unusual high-pressure behavior of hydrogen confined within nanopores through a combination of experimental measurements and theoretical calculations. The nanoconfined hydrogen molecules retain an hcp lattice up to 170 GPa, yet significant deviations from the vibrational characteristics of bulk hydrogen are observed in the primary vibrons of both Raman and infrared spectra.

View Article and Find Full Text PDF

Advanced glycation end products (AGEs) accumulate in various tissues, including bone, due to aging and conditions like diabetes mellitus. To investigate the effects of AGEs on bone material quality and biomechanical properties, an study utilizing human tibial cortex, sectioned into 90 beams, and randomly assigned to three mechanical test groups was performed. Each test group included ribose ( = 0.

View Article and Find Full Text PDF

Super-resolution imaging of cell metabolism is hindered by the incompatibility of small metabolites with fluorescent dyes and the limited resolution of imaging mass spectrometry. We present ultrasensitive reweighted visible stimulated Raman scattering (URV-SRS), a label-free vibrational imaging technique for multiplexed nanoscopy of intracellular metabolites. We developed a visible SRS microscope with extensive pulse chirping to improve the detection limit to ~4,000 molecules and introduced a self-supervised multi-agent denoiser to suppress non-independent noise in SRS by over 7.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!