Colorimetric values of esthetic stainless steel crowns.

Quintessence Int

Department of Pediatric Dentistry, Nagasaki University, School of Dentistry, 1-7-1, Sakamoto, Nagasaki, 852-8588, Japan.

Published: November 2002

AI Article Synopsis

Article Abstract

Objectives: The colorimetric values of two different kinds of esthetic stainless steel crowns were measured and compared with the colorimetric values of primary anterior teeth in Japanese children.

Method And Materials: The colorimetric values of resin composite-faced stainless steel crowns (Kinder Krown) and epoxy-coated stainless steel crowns (White Steel Crown) were measured with a color difference meter. The Commission Internationale de Eclairage L*, a*, b*, and delta E*ab values and Munsell value, chroma, and hue were calculated. The data were compared with previously reported colorimetric values of Japanese primary anterior teeth measured with the same color difference meter used in this study.

Results: Compared to Japanese primary anterior teeth, Kinder Krown Pedo I and Pedo II showed much higher L* values and lower hue; on the other hand, White Steel Crown showed much higher L*, a*, b* values, much higher value and chroma, and much lower hue.

Conclusion: Color analysis revealed that the colors of the White Steel Crown and Kinder Krown Pedo I were substantially different from the color of Japanese primary anterior teeth. The color difference between Pedo II crowns and Japanese primary anterior teeth was relatively high, but the color of Pedo II might be acceptable for clinical use.

Download full-text PDF

Source

Publication Analysis

Top Keywords

colorimetric values
20
primary anterior
20
anterior teeth
20
stainless steel
16
steel crowns
16
japanese primary
16
kinder krown
12
white steel
12
steel crown
12
color difference
12

Similar Publications

Iron deficiency is a widespread nutritional problem affecting millions of people globally, leading to various health issues including anemia. Iron fortification of meat and meat products has emerged as an effective strategy to combat this issue. This review explores the process and benefits of iron fortification, focusing on the types of iron compounds suitable for fortification, such as ferrous sulfate and ferric pyrophosphate, their bioavailability, and their impact on the sensory and nutritional qualities of meat products.

View Article and Find Full Text PDF

Volatile sulfur compounds (VSCs) are prevalent human biogases detectable in individuals with periodontal disease; therefore, measuring VSC gases in human breath can yield significant, noninvasive diagnostic information indicative of such diseases. In this study, we developed a gas sensor with selective and enhanced sensing capabilities for VSCs methyl mercaptan and hydrogen sulfide. This sensor comprises a cellulose paper substrate impregnated with 2,2'-dithiobis(5-nitropyridine) and sodium acetate.

View Article and Find Full Text PDF

Non-destructive color sensors are widely applied for rapid analysis of various biological and healthcare point-of-care applications. However, existing red, green, blue (RGB)-based color sensor systems, relying on the conversion to human-perceptible color spaces like hue, saturation, lightness (HSL), hue, saturation, value (HSV), as well as cyan, magenta, yellow, key (CMYK) and the CIE L*a*b* (CIELAB) exhibit limitations compared to spectroscopic methods. The integration of machine learning (ML) techniques presents an opportunity to enhance data analysis and interpretation, enabling insights discovery, prediction, process automation, and decision-making.

View Article and Find Full Text PDF

Nanozyme-based dual-mode DNA biosensor for self-powered ultrasensitive detection of sulfate-reducing bacteria.

Biosens Bioelectron

January 2025

Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China. Electronic address:

Sulfate-reducing bacteria (SRB) are recognized as significant contributors to microbiologically induced corrosion (MIC). Developing effective, economical, sensitive, and specific detection methods for SRB is crucial for understanding microbial corrosion mechanisms and for early monitoring. In this study, a novel dual-mode DNA biosensor was developed, utilizing a nanozyme-based fuel cell to enable self-powered detection of the DsrA gene in SRB, while demonstrating excellent sensitivity, specificity, and reliability.

View Article and Find Full Text PDF

Multifunctional metal-organic frameworks-mediated colorimetric/photothermal immunosensor for highly sensitivity detection of dibutyl phthalate.

Food Chem

January 2025

School of Food Science and Engineering, Hainan University, Haikou 570228, China; Laboratory of Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs, Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; Food Safety Research Institute, HuBei University, Wuhan 430062, China. Electronic address:

Dibutyl phthalate (DBP), a priority pollutant among phthalic acid esters (PAEs) exhibits significant reproductive and respiratory toxicity. In this study, a multifunctional metal-organic frameworks-mediated colorimetric/photothermal immunosensor was established for the quantitative detection of DBP. Firstly, a highly sensitive and specific monoclonal antibody (mAb), designated 3A5, was prepared with a sensitivity IC value of 16.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!