NO is a crucial mediator of the inflammatory response, but its in vivo role as a determinant of lung inflammation remains unclear. We addressed the in vivo role of NO in regulating the activation of NF-kappaB and expression of inflammatory proteins using an in vivo mouse model of sepsis induced by i.p. injection of Escherichia coli. We observed time-dependent degradation of IkappaB and activation of NF-kappaB accompanied by increases in inducible NOS, macrophage inflammatory protein-2 (MIP-2), and ICAM-1 expression after E. coli challenge, which paralleled the ability of lung tissue to produce high-output NO. To determine the role of NO in this process, mice were pretreated with the NO synthase (NOS) inhibitor NG-methyl-L-arginine. Despite having relatively modest effects on NF-kappaB activation and ICAM-1 or inducible NOS expression, the NOS inhibitor almost completely inhibited expression of MIP-2 in response to E. coli challenge. These responses were associated with the inhibition of migration of neutrophils in lung tissue and increased permeability induced by E. coli. In mice pretreated with NG-methyl-L-arginine, coadministration of E. coli with the NO donor (Z)-1-[N-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate substantially restored MIP-2 expression but decreased ICAM-1 expression. The results suggest that NO generated after administration of E. coli serves as an important proinflammatory signal to up-regulate MIP-2 expression in vivo. Thus, NO production in high quantities may be important in the mechanism of amplification of the lung inflammatory response associated with sepsis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4049/jimmunol.169.4.2093 | DOI Listing |
Nat Commun
December 2024
Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China.
Marine cyclopianes are a family of diterpenoid with novel carbon skeleton and diverse biological activities. Herein, we report our synthetic and chemical proteomics studies of cyclopiane diterpenes which culminate in the asymmetric total synthesis of conidiogenones C, K and 12β-hydroxy conidiogenone C, and identification of Immunity-related GTPase family M protein 1 (IRGM1) as a cellular target. Our asymmetric synthesis commences from Wieland-Miescher ketone and features a sequential intramolecular Pauson-Khand reaction and gold-catalyzed Nazarov cyclization to rapidly construct the 6-5-5-5 tetracyclic skeleton.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China.
The potential for mitigating intestinal inflammation through the gut-bone axis in the treatment of osteoporosis is significant. While various gut-derived postbiotics or bacterial metabolites have been created as dietary supplements to prevent or reverse bone loss, their efficacy and safety still need improvement. Herein, a colon-targeted drug delivery system is developed using surface engineering of polyvinyl butyrate nanoparticles by shellac resin to achieve sustained release of postbiotics butyric acid at the colorectal site.
View Article and Find Full Text PDFSignal Transduct Target Ther
December 2024
Department of Orthopedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, 400038, China.
Metabolites can double as a signaling modality that initiates physiological adaptations. Metabolism, a chemical language encoding biological information, has been recognized as a powerful principle directing inflammatory responses. Cytosolic pH is a regulator of inflammatory response in macrophages.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK.
The role of myeloid cells in the pathogenesis of SARS-CoV-2 is well established, in particular as drivers of cytokine production and systemic inflammation characteristic of severe COVID-19. However, the potential for myeloid cells to act as bona fide targets of productive SARS-CoV-2 infection, and the specifics of entry, remain unclear. Using a panel of anti-SARS-CoV-2 monoclonal antibodies (mAbs) we performed a detailed assessment of antibody-mediated infection of monocytes/macrophages.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Department of Critical Care Medicine and Emergency, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China.
The sepsis-induced acute lung injury (ALI) still represents one of the leading causes of death in critically ill patients, underscoring the need for novel therapies. Excessive activation of immune cells and damage of reactive oxygen species (ROS) are the main factors that exacerbate lung injury. Here, the multifaceted immunomodulatory nanocomplexes targeting the proinflammatory neutrophilic activation and ROS damage are established.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!