Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objective: The purposes of this study were to investigate cavity surfaces morphologically, and compare microleakage at cavities prepared by Er:YAG laser after composite resin restoration versus conventional mechanical treatment in human primary teeth in vitro.
Background Data: There have been few reports on microleakage at cavities prepared by Er:YAG laser irradiation.
Materials And Methods: A total of 30 cavities (class V) in human primary teeth were used. Half of the cavities were prepared by an Er:YAG laser system at 300 mJ pulse energy and 4 Hz, and the other half were prepared with a high-speed diamond bur. Five cavities from each group were investigated by scanning electron microscopy (SEM) and histopathological examination. Remaining cavities were filled with a composite resin without an acid-etching technique and then subjected to microleakage test in 0.6% rhodamine B solution under thermocycling.
Results: Microleakage (score: 2.45 +/- 1.07) at cavities prepared by laser was significantly less than that by bur (score: 1.30 +/- 0.95; p < 0.05). SEM observation showed that, compared with the relatively flat appearance of cavities prepared by bur, cavity margins prepared by laser were irregular but there was almost no smear layer at the cavity walls.
Conclusion: It can be concluded that cavity surfaces prepared by Er:YAG laser are irregular, but microleakage at cavities prepared by the laser after filling with composite resin is better than that by mechanical bur using the dye penetration method.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/104454702760090227 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!