Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: We present a simple method to train a potential function for the protein folding problem which, even though trained using a small number of proteins, is able to place a significantly large number of native conformations near a local minimum. The training relies on generating decoys by energy minimization of the native conformations using the current potential and using a physically meaningful objective function (derivative of energy with respect to torsion angles at the native conformation) during the quadratic programming to place the native conformation near a local minimum.
Results: We also compare the performance of three different types of energy functions and find that while the pairwise energy function is trainable, a solvation energy function by itself is untrainable if decoys are generated by minimizing the current potential starting at the native conformation. The best results are obtained when a pairwise interaction energy function is used with solvation energy function.
Conclusions: We are able to train a potential function using six proteins which places a total of 42 native conformations within approximately 4 A rmsd and 71 native conformations within approximately 6 A rmsd of a local minimum out of a total of 91 proteins. Furthermore, the threading test using the same 91 proteins ranks 89 native conformations to be first and the other two as second.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC126205 | PMC |
http://dx.doi.org/10.1186/1472-6807-2-4 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!