A number of studies have shown elevated matrix metalloproteinase expression in chronic wound fluid compared to an acute wound; however, little has been done to characterize animal models in a similar manner and thus determine their usefulness. The diabetes mouse is an animal model of type II diabetes that shows impaired dermal wound healing and has been proposed as a model of human impaired wound healing. In this study we have determined the mRNA and protein expression profiles of matrix metalloproteinases 2, 3, and 9 during the first 10 d of dermal healing for the diabetes mouse and its normally healing littermate. Additionally, human wound fluid from diabetic chronic wounds and acute surgical wounds were studied to enable a comparison of the model to the human condition. We show that during the early stages of wound healing the diabetes mouse possesses significantly reduced protein levels of pro-matrix metalloproteinases 2 and 9 within the wound tissue and active matrix metalloproteinase 3 within the fluid. Pro-matrix metalloproteinase 3 levels are also significantly reduced in the diabetes mouse during the later stages of healing. These differences may be contributing to the impaired healing of the diabetes mouse; however, they differ from the human data presented here, which show elevated matrix metalloproteinase 2 and reduced matrix metalloproteinase 9 in human diabetic chronic wound fluid compared to acute wound fluid. Therefore, although clearly showing the importance of appropriate matrix metalloproteinase regulation for normal acute wound healing to occur, the diabetes mouse may not be an ideal model for study of matrix metalloproteinase involvement in human chronic wound healing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1046/j.1523-1747.2002.01779.x | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Center for Nutritional Sciences, Food Science and Human Nutrition Department, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL 32611.
Documented worldwide, impaired immunity is a cardinal signature resulting from loss of dietary zinc, an essential micronutrient. A steady supply of zinc to meet cellular requirements is regulated by an array of zinc transporters. Deletion of the transporter Zip14 (Slc39a14) in mice produced intestinal inflammation.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Physiology, University of Toronto, Toronto, Ontario, Canada.
Gestational diabetes mellitus (GDM), a transient form of diabetes that resolves postpartum, is a major risk factor for type 2 diabetes (T2D) in women. While the progression from GDM to T2D is not fully understood, it involves both genetic and environmental components. By integrating clinical, metabolomic, and genome-wide association study (GWAS) data, we identified associations between decreased sphingolipid biosynthesis and future T2D, in part through the allele of the gene in Hispanic women shortly after a GDM pregnancy.
View Article and Find Full Text PDFCell Rep
January 2025
Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX, USA. Electronic address:
Hepatic stellate cells (HSCs) are key drivers of local fibrosis. Adiponectin, conventionally thought of as an adipokine, is also expressed in quiescent HSCs. However, the impact of its local expression on the progression of liver fibrosis remains unclear.
View Article and Find Full Text PDFDiabetes
January 2025
Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China.
Diabetic microvascular dysfunction is evidenced by disrupted endothelial cell junctions and increased microvascular permeability. However, effective strategies against these injuries remain scarce. In this study, the type 2 diabetes mouse model was established by high-fat diet combined with streptozotocin injection in Rnd3 endothelial- specific transgenic and knockout mice.
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
January 2025
Division of Pulmonary, Critical Care, and Sleep Medicine, University of Miami, Miller School of Medicine, Miami Florida.
Intermittent hypoxemia (IH), a pathophysiologic consequence of obstructive sleep apnea (OSA), adversely affects insulin sensitivity, insulin secretion, and glucose tolerance. Nifedipine, an L-type calcium channel blocker frequently used for treatment of hypertension, can also impair insulin sensitivity and secretion. However, the cumulative and interactive repercussions of IH and nifedipine on glucose homeostasis have not been previously investigated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!