Gaegurin 5 (GGN5) is a cationic 24-residue anti-microbial peptide isolated from the skin of a Korean frog, Rana rugosa. It contains a central proline residue and an intra-residue disulphide bridge in its C-terminus, which are common to the anti-microbial peptides found in Ranidae. We determined the solution structure of GGN5 bound to SDS micelles for the first time and investigated the role of proline, cysteine and a disulphide bridge on the structure and activity of GGN5. GGN5 adopts an amphipathic alpha-helical structure spanning residues 3-20 kinked around Pro-14, which allows the hydrophobic residues to reside in the concave helical region, and a disulphide-bridged loop-like conformation in its C-terminus. By replacement of proline with alanine (PAGGN5), a straight and rigid helix was formed in the central region and was more stable than the kinked helix. Reduction of a disulphide bridge in the C-terminus (GGN5SH) maintained the loosely ordered loop-like conformation, while the replacement of two cysteines with serines (CSGGN5) caused the C-terminal conformation to be completely disordered. The magnitude of anti-microbial activity of the peptides was closely related to their helical stability in the order PAGGN5>GGN5>GGN5SH>CSGGN5, suggesting that the helical stability of the peptides is important for anti-microbial activity. On the other hand, the significant increase of haemolytic activity of PAGGN5 implies that a helical kink of GGN5 could be involved in the selectivity of target cells. The location of GGN5 and PAGGN5, analysed using paramagnetic probes, was mainly at the surface of SDS micelles, although the location of the N-terminal region was slightly different between them.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1222972 | PMC |
http://dx.doi.org/10.1042/BJ20020385 | DOI Listing |
Nat Commun
January 2025
Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Croix du sud 4-5, L7.07.07, Louvain-la-Neuve, Belgium.
The SARS-CoV-2 spike protein's membrane-binding domain bridges the viral and host cell membrane, a critical step in triggering membrane fusion. Here, we investigate how the SARS-CoV-2 spike protein interacts with host cell membranes, focusing on a membrane-binding peptide (MBP) located near the TMPRSS2 cleavage site. Through in vitro and computational studies, we examine both primed (TMPRSS2-cleaved) and unprimed versions of the MBP, as well as the influence of its conserved disulfide bridge on membrane binding.
View Article and Find Full Text PDFChembiochem
December 2024
Friedrich-Schiller-Universitat Jena, Institute of Physical Chemistry, GERMANY.
Heme is involved in many critical processes in pathogenic bacteria as iron acquisition by these microorganisms is achieved by either direct uptake of heme or use of heme-binding proteins called hemophores. Exploring the underlying mechanisms on a molecular level can open new avenues in understanding the host-pathogen interactions. Any imbalance of the heme concentration has a direct impact on the bacterial growth and survival.
View Article and Find Full Text PDFActa Biochim Biophys Sin (Shanghai)
December 2024
Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China.
The use of green fluorescence protein (GFP) has advanced numerous areas of life sciences. An ultra-thermostable GFP (TGP), engineered from a coral GFP, offers potential advantages over traditional jellyfish-derived GFP because of its high stability. However, owing to its later discovery, TGP lacks the extensive toolsets available for GFP, such as heavy chain-only antibody binders known as nanobodies.
View Article and Find Full Text PDFMethods Mol Biol
December 2024
Proteomics, Bioanalytics Department, Nestlé Institute of Food Safety & Analytical Sciences, Nestlé Research, Lausanne, Switzerland.
Protein biomarker discovery in human biological fluids has greatly developed over the past two decades thanks to technological advances allowing deeper proteome coverage and higher sample throughput, among others. While blood samples are most commonly investigated due to their moderate ease of collection and high information content, other biological fluids such as cerebrospinal fluid (CSF) and urine are highly relevant for specific pathologies, such as brain and urologic diseases, respectively. Independently of the biofluid of interest, platforms that can robustly handle a large number of samples are essential in the discovery phase of a clinical study.
View Article and Find Full Text PDFJ Biol Chem
December 2024
Leiden Institute of Chemistry, Leiden University, PO Box 9502, 2300 RA, Leiden, The Netherlands. Electronic address:
Cytochrome bd from Mycobacterium tuberculosis (Mtbd) is a menaquinol oxidase that has gained interest as an antibiotic target due to its importance in survival under infectious conditions. Mtbd contains a characteristic disulfide bond that has been hypothesized to allow for Mtbd activity regulation at the enzymatic level, possibly helping M. tuberculosis to rapidly adapt to the hostile environment of the phagosome.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!