Vacuolar H(+)-ATPases (V-ATPases) are highly conserved proton pumps that couple hydrolysis of cytosolic ATP to proton transport out of the cytosol. Although it is generally believed that V-ATPases transport protons by a rotary catalytic mechanism analogous to that used by F(1)F(0)-ATPases, the structure and subunit composition of the central or peripheral stalk of the multisubunit complex are not well understood. We searched for proteins that bind to the E subunit of V-ATPase using the yeast two-hybrid assay and identified the H subunit as an interacting partner. Physical association between the E and H subunits of V-ATPase was confirmed in vitro by precipitation assays. Deletion mapping analysis revealed that a 78-amino acid fragment at the amino terminus of the E subunit was sufficient for binding to the H subunit. Expression of the amino-terminal fragments of the E subunits from human and yeast as dominant-negative mutants resulted in dramatic decreases in bafilomycin A(1)-sensitive ATP hydrolysis and proton transport activities of V-ATPase. Our data demonstrate the physiological significance of the interaction between the E and H subunits of V-ATPase and extend previous studies on the arrangement of subunits on the peripheral stalk of V-ATPase.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M203521200DOI Listing

Publication Analysis

Top Keywords

proton transport
8
peripheral stalk
8
subunits v-atpase
8
subunit
7
v-atpase
7
amino-terminal domain
4
domain subunit
4
subunit vacuolar
4
vacuolar h+-atpase
4
h+-atpase v-atpase
4

Similar Publications

Electric Forces and ATP Synthesis.

Rev Physiol Biochem Pharmacol

January 2025

Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, UK.

ATP synthase is a rotary motor enzyme that drives the formation of ATP from ADP and P and uses multiple electrical forces to do this. This chapter outlines the exquisite use of these electrical forces to generate the high energy phosphates on which all our lives depend. Vacuolar ATPases and the ADP/ATP carrier also are explored.

View Article and Find Full Text PDF

Background: Lysosome is a highly heterogeneous membranous organelle in eukaryotic cells, which regulates many physiological processes in the cell. Studies have found that lysosomal dysfunction disrupts cellular homeostasis and is associated with Parkinson's disease (PD). Transmembrane protein 175 (TMEM175) is a lysosomal cation channel whose activity is essential for lysosomal homeostasis.

View Article and Find Full Text PDF

The design of the flow field structure for bipolar plates significantly influences the output performance of proton exchange membrane fuel cells (PEMFCs). Adding baffles in the flow channels can enhance the transportation of reactants and electrochemical performance of the PEMFCs. In this study, three types of baffles with different shapes and sizes were designed.

View Article and Find Full Text PDF

Tenapanor: A novel therapeutic agent for dialysis patients with hyperphosphatemia.

Ther Apher Dial

January 2025

Division of Nephrology, Endocrinology, and Metabolism, Department of Internal Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan.

Patients on dialysis often develop hyperphosphatemia, contributing to an increased risk of cardiovascular events and mortality. Currently, several types of phosphate binders (PBs) exist for the treatment of hyperphosphatemia, but they are sometimes associated with drug-specific side effects and high pill burden, making it difficult to control serum phosphorus appropriately. Tenapanor, which has a novel mechanism to reduce serum phosphorus via selective sodium/proton exchange transporter 3 inhibition, was approved for hyperphosphatemia in Japan in 2023.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!