An increase in the dose of the heterochromatin-associated Su(var)3-7 protein of Drosophila augments the genomic silencing of position-effect variegation. We have expressed a number of fragments of the protein in flies to assign functions to the different domains. Specific binding to pericentric heterochromatin depends on the C-terminal half of the protein. The N terminus, containing six of the seven widely spaced zinc fingers, is required for binding to bands on euchromatic arms, with no preference for pericentric heterochromatin. In contrast to the enhancing properties of the full-length protein, the N terminus half has no effect on heterochromatin-dependent position-effect variegation. In contrast, the C terminus moiety suppresses variegation. This dominant negative effect on variegation could result from association of the fragment with the wild type endogenous protein. Indeed, we have found and mapped a domain of self-association in this C-terminal half. Furthermore, a small fragment of the C-terminal region actually depletes pericentric heterochromatin from endogenous Su(var)3-7 and has a very strong suppressor effect. This depletion is not followed by a depletion of HP1, a companion of Su(var)3-7. This indicates that Su(var)3-7 does not recruit HP1 to heterochromatin. We propose in conclusion that the association of Su(var)3-7 to heterochromatin depends on protein-protein interaction mediated by the C-terminal half of the sequence, while the silencing function requires also the N-terminal half containing the zinc fingers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/dev.129.17.3975 | DOI Listing |
The chromatin of the centromere provides the assembly site for the mitotic kinetochore that couples microtubule attachment and force production to chromosome movement in mitosis. The chromatin of the centromere is specified by nucleosomes containing the histone H3 variant CENP-A. The constitutive centromeric-associated network (CCAN) and kinetochore are assembled on CENP-A chromatin to enable chromosome separation.
View Article and Find Full Text PDFNucleic Acids Res
December 2024
Laboratory of Chromosome Engineering, Department of Frontier Research and Development, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu 292-0818, Japan.
Aneuploidy is caused by chromosomal missegregation and is frequently observed in cancers and hematological diseases. Therefore, it is important to understand the molecular mechanisms underlying chromosomal segregation. The centromere's intricate structure is crucial for proper chromosome segregation, with heterochromatin at the pericentromeric α-satellites playing a key role.
View Article and Find Full Text PDFbioRxiv
October 2024
Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104.
Pericentromeres are heterochromatic regions adjacent to centromeres that ensure accurate chromosome segregation. Despite their conserved function, they are composed of rapidly evolving A/T-rich satellite DNA. This paradoxical observation is partially resolved by epigenetic mechanisms that maintain heterochromatin, independent of specific DNA sequences.
View Article and Find Full Text PDFSci Bull (Beijing)
November 2024
New Cornerstone Science Laboratory, Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China; National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:
Commun Biol
September 2024
Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!