Nitration of tyrosine residues in proteins has been observed in many inflammatory tissues of arthritis, ulcerative colitis, septic shock and ischemia-reperfusion injury. Although several studies have been carried out, it is still unclear what type of protein is nitrated and whether tyrosine nitration interferes with protein function. Peroxisome proliferator-activated receptor gamma (PPARgamma) is a nuclear receptor whose activation is linked to several physiological pathways including regulation of insulin sensitivity and control of inflammation. PPARgamma possesses several tyrosine residues, which might be potential targets for nitration by peroxynitrite during inflammatory responses. Here we have investigated whether PPARgamma is nitrated in macrophage-like RAW 264 cells and the effect of nitration on the translocation of PPARgamma into the nucleus. Western blot analysis showed that tumor necrosis factor-alpha, lipopolysaccharide or peroxynitrite treatment significantly increases the nitration of PPARgamma. Cell fractionation analysis and immunofluorescence coupled with confocal laser microscopy revealed that nitration of PPARgamma inhibits its ligand-dependent translocation from the cytosol into the nucleus. Together, these results indicate that nitration of PPARgamma during inflammation may be involved in a reduction in the control of inflammatory responses and also in the development of resistance to PPARgamma ligand-based therapies against inflammation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0014-5793(02)03059-4DOI Listing

Publication Analysis

Top Keywords

nitration ppargamma
16
nitration
8
ppargamma inhibits
8
inhibits ligand-dependent
8
ligand-dependent translocation
8
raw 264
8
tyrosine residues
8
ppargamma
8
inflammatory responses
8
translocation nucleus
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!