Methionine catabolism occurs mostly in the liver through the formation of S-adenosylmethionine (SAM) in a reaction catalyzed by methionine adenosyltransferase (MAT). S-adenosylmethionine is the principal biologic methyl donor, a precursor for polyamines, and in liver, it is also a precursor for reduced glutathione (GSH). Liver-specific and non-liver-specific MAT are products of two different genes, MAT1A and MAT2A, respectively. Mature liver expresses MAT1A, whereas MAT2A is expressed in extrahepatic tissues and induced during liver growth and de-differentiation. The type of MAT expressed by the cell affects the steady-state SAM level, DNA methylation, and growth rate. This has been demonstrated further by using the MAT1A knockout mouse model in which hepatic SAM and GSH levels decrease, the liver becomes larger and more susceptible to injury, and steatohepatitis develops spontaneously. Altered methionine metabolism in alcoholic liver disease results in decreased transmethylation and transsulfuration, changes that may play important pathogenic roles. Major changes include a relative switch in MAT expression; decreased hepatic SAM, GSH, and DNA methylation levels; decreased homocysteine metabolism; and hyperhomocysteinemia. Consequences of hepatic DNA hypomethylation include increased expression of c-myc and DNA strand break accumulation. One possible consequence of hyperhomocysteinemia is increased fibrogenesis. Abnormal methionine metabolism may also occur in Kupffer cells, which express both forms of MAT. If SAM levels also decrease in these cells, this may contribute to the induction of tumor necrosis factor (TNF) expression and release. In summary, altered hepatic methionine metabolism can have serious consequences that affect not only hepatocytes, but also hepatic stellate and Kupffer cells. These changes can lead to impaired antioxidant defense, altered gene expression, promotion of fibrogenesis, and even hepatocarcinogenesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0741-8329(02)00226-4 | DOI Listing |
Plant Sci
January 2025
Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial Department of Education, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Agricultural Sciences, Guizhou University, Guiyang 550025, Guizhou, China. Electronic address:
Amino acids are crucial nutrients for growth in crops. In this study, we found an amino acid transporter-like 13 (OsATL13), that coordinately determined rice yield and quality. OsATL13 was primarily expressed in the root and panicle, its protein was localized on plasma membrane, and it principally transported phenylalanine and methionine.
View Article and Find Full Text PDFFront Genet
January 2025
Department of General Surgery, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu, China.
Background: Neoadjuvant, endocrine, and targeted therapies have significantly improved the prognosis of breast cancer (BC). However, due to the high heterogeneity of cancer, some patients cannot benefit from existing treatments. Increasing evidence suggests that amino acids and their metabolites can alter the tumor malignant behavior through reshaping tumor microenvironment and regulation of immune cell function.
View Article and Find Full Text PDFJ Pineal Res
March 2025
College of Enology, Shaanxi Provincial Key Laboratory of Viti-Viniculture, Shaanxi Engineering Research Center of Characteristic Fruit Directional Design and Machining, Northwest A&F University, Yangling, China.
Melatonin is involved in biological adverse stress response and enhances the ability of yeast to adapt to adverse conditions. This study investigated the mechanism of exogenous melatonin addition to Saccharomyces cerevisiae (S. cerevisiae) under copper stress.
View Article and Find Full Text PDFThe effects of Acremonium terricola culture (ATC) on production performance, serum biochemical parameters, egg quality and amino acid contents in the yolk of eggs of Beijing You-chicken were conducted in the current study. A total of 216 Beijing You-chickens (330 days old) were randomly divided into 2 groups. The control group (CON) was fed a corn-soybean-based diet, and the experimental group was fed a basal diet supplemented with 0.
View Article and Find Full Text PDFPlant Physiol
December 2024
Department of Biology, University of Oxford, South Parks Road, Oxford OX1 3RB, UK.
The cysteine/arginine (Cys/Arg) branch of the N-degron pathway controls the stability of certain proteins with methionine (Met)-Cys N-termini, initiated by Met cleavage and Cys oxidation. In seeding plants, target proteins include the Group VII Ethylene Response Factors, which initiate adaptive responses to low oxygen (hypoxic) stress, as well as Vernalization 2 (VRN2) and Little Zipper 2 (ZPR2), which are involved in responses to endogenous developmental hypoxia. It is essential that these target proteins are only degraded by the N-degron pathway under the appropriate physiological conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!