The principal interferon-alpha/beta (IFN-I)-producing cells are plasmacytoid dendritic cell (PDC) precursors belonging to the lymphoid lineage. Monocytes that can differentiate into dendritic cells (DC) also produce IFN-I, although much less than PDC, after interaction with infectious agents. We show that whereas viruses trigger these cells to produce IFN-I, the amount of IFN is tightly controlled by cytokines. Monocytes produced IFN-I in response to Sendai virus (SV) infection, and PDC responded to both SV and herpes simplex virus (HSV). All cytokines tested failed to induce production of IFN-I in the absence of infection. However, among 18 relevant cytokines, incubation of PDC with interleukin-4 (IL-4), IL-15, and IL-7 alone or in combination with IL-3 before infection, enhanced IFN-I secretion. At variance, IL-12 alone or in synergy with granulocyte-macrophage colony-stimulating factor (GM-CSF) was active on SV-infected but not on HSV-infected monocytes. Tumor necrosis factor-alpha (TNF-alpha) and IL-4 inhibited IFN-I production by PDC and monocytes, respectively, and IL-10 strongly inhibited IFN-I production in both cell lineages. The response of PDC to IL-7 and IL-15, which also activate natural killer (NK) cell maturation, further emphasizes the cooperation between these two cell subsets in the control of innate immunity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/10799900260100132 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!