Lentivirus-based gene transfer systems have demonstrated their utility in mediating gene transfer to dividing and nondividing cells both in vitro and in vivo. An early-generation gene transfer system developed from bovine immunodeficiency virus (BIV) has been described (Berkowitz et al., J. Virol. 2001;75:3371-3382). In this paper, we describe the development of second-generation (three-plasmid) and third-generation (four-plasmid) BIV-based systems. All accessory genes (vif, vpw, vpy, and tmx) and the regulatory gene tat were deleted or largely truncated from the packaging construct. Furthermore, we split the packaging function into two constructs by expressing Rev in a separate plasmid. Together with our minimal BIV transfer vector construct and a vesicular stomatitis virus G glycoprotein-expressing plasmid, the BIV vectors were generated. The vectors produced by the three- and four-plasmid systems had titers greater than 1 x 10(6) transducing units per milliliter and were fully functional as indicated by their ability to efficiently transduce both dividing and nondividing cells. These results suggest that the accessory genes vif, vpw, vpy, and tmx are dispensable for functional BIV vector development. The modifications made to the packaging constructs improve the safety profile of the vector system. Finally, BIV vectors provide an alternative to human immunodeficiency virus-based gene transfer systems.

Download full-text PDF

Source
http://dx.doi.org/10.1089/104303402760128522DOI Listing

Publication Analysis

Top Keywords

gene transfer
20
transfer systems
12
bovine immunodeficiency
8
immunodeficiency virus-based
8
virus-based gene
8
dividing nondividing
8
nondividing cells
8
accessory genes
8
genes vif
8
vif vpw
8

Similar Publications

Achieving the precise targeting of lentiviral vectors (LVs) to specific cell populations is crucial for effective gene therapy, particularly in cancer treatment where the modulation of the tumor microenvironment can enhance anti-tumor immunity. Programmed cell death protein 1 (PD-1) is overexpressed on activated tumor-infiltrating T lymphocytes, including regulatory T cells that suppress immune responses via FOXP3 expression. We developed PD1-targeted LVs by incorporating the anti-PD1 nanobody nb102c3 into receptor-blinded measles virus H and VSV-G glycoproteins.

View Article and Find Full Text PDF

Dual therapies (DT) combining integrase strand transfer inhibitors (INSTIs) with second-generation non-nucleoside reverse transcriptase inhibitors (2nd-Gen-NNRTIs) offer new possibilities for HIV treatment to improve adherence. However, drug resistance associated mutations (RAMs) to prior antiretrovirals may jeopardize the efficacy of DT. We herein describe the predicted efficacy of DT combining INSTIs + 2nd-Gen-NNRTI following treatment failure among Cameroonian patients.

View Article and Find Full Text PDF

Oral Delivery of miR146a Conjugated to Cerium Oxide Nanoparticles Improves an Established T Cell-Mediated Experimental Colitis in Mice.

Pharmaceutics

December 2024

Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Arizona Tucson College of Medicine, Banner Children's at Diamond Children's Medical Center, 1656 E Mabel St, Rm 230, Tucson, AZ 85721, USA.

Dysregulated inflammation and oxidative stress are strongly implicated in the pathogenesis of inflammatory bowel disease. We have developed a novel therapeutic that targets inflammation and oxidative stress. It is comprised of microRNA-146a (miR146a)-loaded cerium oxide nanoparticles (CNPs) (CNP-miR146a).

View Article and Find Full Text PDF

Genetic Transformation of L. with the Gene Confers Resistance to (Walker).

Plants (Basel)

December 2024

State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, China.

L. is a popular ornamental plant in the genus Torenia, widely used in commercial landscaping, especially during the summer. Additionally, Torenia has served as a model ornamental plant in many studies exploring ornamental characteristics and pest control through genetic engineering.

View Article and Find Full Text PDF

Sewage sludge is recognized as both a source and a reservoir for antibiotic resistance genes (ARGs). Within an anaerobic digestion (AD) system, the presence of microplastics (MPs) has been observed to potentially facilitate the proliferation of these ARGs. Understanding the influence of MPs on microbial behavior and horizontal gene transfer (HGT) within the AD system is crucial for effectively managing the dissemination of ARGs in the environment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!