Mechanical input is known to regulate skeletal mass. In vitro, application of strain inhibits osteoclast formation by decreasing expression of the ligand RANKL in bone stromal cells, but the mechanism responsible for this down-regulation is unknown. In experiments here, application of 1.8% equibiaxial strain for 6 h reduced vitamin D-stimulated RANKL mRNA expression by nearly one-half in primary bone stromal cells. Application of strain caused a rapid activation of ERK1/2, which returned to baseline by 60 minutes. Adding the ERK1/2 inhibitor PD98059 30 minutes before strain delivery prevented the strain effect on RANKL mRNA expression, suggesting that activation of ERK1/2 was required for transduction of the mechanical force. Mechanical strain also activated N-terminal Jun kinase (JNK) that, in contrast, did not return to baseline during 24 h of continuous strain. This suggests that JNK may represent an accessory pathway for mechanical transduction in bone cells. Our data indicate that strain modulation of RANKL expression involves activation of MAPK pathways.

Download full-text PDF

Source
http://dx.doi.org/10.1359/jbmr.2002.17.8.1452DOI Listing

Publication Analysis

Top Keywords

bone stromal
12
stromal cells
12
strain
9
mechanical strain
8
rankl expression
8
application strain
8
rankl mrna
8
mrna expression
8
activation erk1/2
8
mechanical
5

Similar Publications

Innovative Ink-Based 3D Hydrogel Bioprinted Formulations for Tissue Engineering Applications.

Gels

December 2024

Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal.

Three-dimensional (3D) models with improved biomimicry are essential to reduce animal experimentation and drive innovation in tissue engineering. In this study, we investigate the use of alginate-based materials as polymeric inks for 3D bioprinting of osteogenic models using human bone marrow stem/stromal cells (hBMSCs). A composite bioink incorporating alginate, nano-hydroxyapatite (nHA), type I collagen (Col) and hBMSCs was developed and for extrusion-based printing.

View Article and Find Full Text PDF

Mechanism of Interleukin-17A Regulation of Mesenchymal Stroma/Stem Cell Osteogenic Differentiation.

Discov Med

December 2024

Department of Molecular Oncology, Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia.

The immune and musculoskeletal systems closely interplay in bone repair and regeneration. After bone injury, the body produces high levels of cytokines and signaling molecules to balance bone formation and resorption. Interleukin (IL)-17A, a cytokine expressed early in the inflammatory process, profoundly influences osteoprogenitor cell fate, thereby contributing to bone homeostasis.

View Article and Find Full Text PDF

Developing a 3D bone model of osteosarcoma to investigate cancer mechanisms and evaluate treatments.

FASEB J

December 2024

Antibody and Vaccine Group, Faculty of Medicine, Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton, Southampton, UK.

Osteosarcoma is the most common primary bone cancer, occurring frequently in children and young adults. Patients are treated with surgery and multi-agent chemotherapy, and despite the introduction of mifamurtide in 2011, there has been little improvement in survival for decades. 3-dimensional models offer the potential to understand the complexity of the osteosarcoma tumor microenvironment and aid in developing new treatment approaches.

View Article and Find Full Text PDF

Glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide 1 (GLP-1) are gut-derived peptide hormones that potentiate glucose-dependent insulin secretion. The clinical development of GIP receptor (GIPR)-GLP-1 receptor (GLP-1R) multi-agonists exemplified by tirzepatide and emerging GIPR antagonist-GLP-1R agonist therapeutics such as maritide is increasing interest in the extra-pancreatic actions of incretin therapies. Both GLP-1 and GIP modulate inflammation, with GLP-1 also acting locally to alleviate gut inflammation in part through anti-inflammatory actions on GLP-1R+ intestinal intraepithelial lymphocytes.

View Article and Find Full Text PDF

Human pluripotent stem cells (hPSCs) have at least three distinct states: naïve pluripotency that represents the cellular states of the pre-implantation epiblast cells, primed pluripotency that represents the cellular states of the post-implantation epiblast cells, and formative pluripotency that represents a developmental continuum between naïve and primed pluripotency. Various cell surface markers have been used to define and analyze primed and naïve hPSCs within heterogeneous populations. However, not much is known about common cell surface markers for the different pluripotent states of hPSCs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!