Mapping of quantitative trait loci affecting quality and production traits in egg layers.

Poult Sci

Animal Production Research, Animal Breeding, MTT Agrifood Research Finland, Jokioinen.

Published: July 2002

A mapping population segregating for egg quality traits was created by a line cross between two egg layer lines and screened by a genome scan. The F2 generation consisted of 307 hens, which were scored for egg quality and production traits. The mapping population was genotyped for 99 microsatellite loci, spanning nine macrochromosomes and five small linkage groups. The linkage maps were used in mapping QTL affecting 14 traits, by using multiple markers and a least-squares approach. We detected 14 genomewide significant and six suggestive QTL that were located on chromosomes 2, 3, 4, 5, and, 8 and sex chromosome Z. A significant QTL affecting egg white thinning was found on chromosome 2. For eggshell strength, a significant QTL was found on chromosome Z. For production traits, the most interesting area was on chromosome 4, where highly significant QTL effects were detected for BW, egg weight, and feed intake in the same area. The most significant QTL explains 25.8% of the phenotypic variance in F2 of body weight. An area affecting the age at first egg, egg weight, and the number of eggs was located on chromosome Z.

Download full-text PDF

Source
http://dx.doi.org/10.1093/ps/81.7.919DOI Listing

Publication Analysis

Top Keywords

production traits
12
quality production
8
egg
8
mapping population
8
egg quality
8
egg weight
8
qtl
6
traits
5
chromosome
5
mapping
4

Similar Publications

Background: Innovation in crop establishment is crucial for wheat productivity in drought-prone climates. Seedling establishment, the first stage of crop productivity, relies heavily on root and coleoptile system architecture for effective soil water and nutrient acquisition, particularly in regions practicing deep planting. Root phenotyping methods that quickly determine coleoptile lengths are vital for breeding studies.

View Article and Find Full Text PDF

Trade-Offs Between Hydraulic Efficiency and Safety in Cotton ( L.) Stems Under Elevated CO and Salt Stress.

Plants (Basel)

January 2025

State Key Laboratory of Efficient Utilization of Agricultural Water Resources, Beijing 100083, China.

Plants respond to environmental changes by altering the anatomical structure of the xylem and its hydraulic properties. While numerous studies have explored the effects of individual environmental factors on crops, the combined interactions of these factors remain underexplored. As climate change intensifies, the occurrence of salt stress is becoming more frequent, alongside a rise in atmospheric CO concentration.

View Article and Find Full Text PDF

A Series of Novel Alleles of Modulating Heading and Salt Tolerance in Rice.

Plants (Basel)

January 2025

State Key Laboratory of Rice Biology and Breeding, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 311400, China.

Rice ( L.) is a staple crop for nearly half of the global population and one of China's most extensively cultivated cereals. Heading date, a critical agronomic trait, determines the regional and seasonal adaptability of rice varieties.

View Article and Find Full Text PDF

The mung bean ( (Linn) Wilczek.) is a major grain crop in China, but its yield is significantly impacted by weeds. However, no pre-emergence herbicides are registered for mung bean fields in the China Pesticide Information Network.

View Article and Find Full Text PDF

Soybean () is a leguminous plant with a broad range of applications, particularly in agriculture and food production, where its seed composition-especially oil and protein content-is highly valued. Improving these traits is a primary focus of soybean breeding programs. In this study, we conducted a genome-wide association study (GWAS) to identify genetic loci linked to oil and protein content in seeds, using imputed genotype data for 180 Eurasian soybean varieties and the novel "genotypic twins" approach.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!