A differential geometry approach for biomedical image processing.

C R Biol

Laboratoire TIMC-IMAG, UMR CNRS 5525, faculté de médecine, université Joseph-Fourier de Grenoble, 38700 La Tronche, France.

Published: April 2002

We show in this paper how simple considerations about bio-arrays images lead to a peak segmentation allowing the genes activity analysis. Bio-arrays images have a particular structure and the aim of the paper is to present a mathematical method allowing their automatic processing. The differential geometry approach used here can be also employed for other types of images presenting grey level peaks corresponding to a functional activity or to a chemical concentration. The mathematical method is based on elementary techniques of differential geometry and dynamical systems theory and provides a simple efficient algorithm when the peaks to segment are isolated.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s1631-0691(02)01459-2DOI Listing

Publication Analysis

Top Keywords

differential geometry
12
geometry approach
8
bio-arrays images
8
mathematical method
8
approach biomedical
4
biomedical image
4
image processing
4
processing paper
4
paper simple
4
simple considerations
4

Similar Publications

Background: Cervical cancer remains a critical global health issue, responsible for over 600,000 new cases and 300,000 deaths annually. Pathological imaging of cervical cancer is a crucial diagnostic tool. However, distinguishing specific areas of cellular differentiation remains challenging because of the lack of clear boundaries between cells at various stages of differentiation.

View Article and Find Full Text PDF

Understanding the chemistry of the inert actinide oxo bond in actinyl ions AnO22+ is important for controlling actinide behavior in the environment, during separations, and in nuclear waste (An = U, Np, Pu). The thioether calixarene TC4A (4-tert-butyltetrathiacalix[4]arene) binds equatorially to [AnO2]n+ (An = U, Np) forming a conical pocket that differentiates the two trans-oxo groups. The 'ate' complexes, [A]2[UO2(TC4A)] (A = [Li(DME)2], HNEt3) and [HNEt3]2[NpO2(TC4A)], enable selective oxo chemistry.

View Article and Find Full Text PDF

Nanophotonic-Enhanced Thermal Circular Dichroism for Chiral Sensing.

ACS Photonics

January 2025

Laboratory of Nanoscience for Energy Technologies (LNET), Faculty of Engineering (STI), Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne 1015, Switzerland.

Circular dichroism (CD) can distinguish the handedness of the chiral molecules. However, it is typically very weak due to vanishing absorption at low molecular concentrations. Here, we suggest thermal CD (TCD) for chiral detection, leveraging the temperature difference in the chiral sample when subjected to right- and left-circularly polarized excitations.

View Article and Find Full Text PDF

The finite-element method (FEM) is a well-established procedure for computing approximate solutions to deterministic engineering problems described by partial differential equations. FEM produces discrete approximations of the solution with a discretisation error that can be quantified with a posteriori error estimates. The practical relevance of error estimates for biomechanics problems, especially for soft tissue where the response is governed by large strains, is rarely addressed.

View Article and Find Full Text PDF

Tailless control of a four-winged flapping-wing micro air vehicle with wing twist modulation.

Bioinspir Biomim

January 2025

Aerospace Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Korea (the Republic of).

This paper describes the tailless control system design of a flapping-wing micro air vehicle in a four-winged configuration, which can provide high control authority to be stable and agile in flight conditions from hovering to maneuvering flights. The tailless control system consists of variable flapping frequency and wing twist modulation. The variable flapping frequency creates rolling moments through differential vertical force from flapping mechanisms that can be independently driven on the left and right sides.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!