The human immunodeficiency virus type 1 (HIV-1) enters the central nervous system (CNS) during the acute phase of infection and causes AIDS-related encephalitis and dementia in 30% of individuals. Previous studies show that HIV-1 sequences derived from the CNS of infected patients, including the sequence encoding reverse transcriptase (RT), are genetically distinct from sequences in other tissues. The hypothesis of the current study is that the RT sequence of HIV-1 is under positive selection within the CNS. Multiple alignments of non-CNS-derived and CNS-derived HIV-1 RT sequences were constructed using the ClustalW 1.8 program. The multiple alignments were analyzed with the Synonymous/Nonsynonymous Analysis Program. Codon positions 122-125, 135-149, and 166-212 of the CNS-derived RT sequences underwent a greater accumulation of nonsynonymous than synonymous substitutions, which was markedly different from the analysis results of the non-CNS-derived RT sequences. These residues are located in the finger and palm subdomains of the RT protein structure, which encodes the polymerase active site. The analysis of CNS-derived partial-length RT sequences that encompass these regions yielded similar results. A comparison of CNS-derived RT sequences to a non-CNS-derived RT consensus sequence revealed that a majority of the nonsynonymous substitutions resulted in a specific amino acid replacement. These results indicate that reverse transcriptase is under positive selection within the CNS. The amino acid replacements were visualized on a three-dimensional structure of HIV-1 RT using the Sybyl software suite. The protein structure analysis revealed that the amino acid replacements observed among the CNS-derived sequences occurred in areas of known structural and functional significance.

Download full-text PDF

Source
http://dx.doi.org/10.1080/13550280290100716DOI Listing

Publication Analysis

Top Keywords

reverse transcriptase
12
cns-derived sequences
12
amino acid
12
human immunodeficiency
8
immunodeficiency virus
8
virus type
8
central nervous
8
nervous system
8
sequences
8
hiv-1 sequences
8

Similar Publications

Objectives: We assessed HIV-1 drug resistance profiles among people living with HIV (PLWH) with detectable viral load (VL) and on dolutegravir-based antiretroviral therapy (ART) in Botswana.

Methods: The study utilised available 100 residual HIV-1 VL samples from unique PLWH in Francistown who had viraemia at-least 6 months after initiating ART in Botswana's national ART program from November 2023 to January 2024. Viraemia was categorized as low-level viraemia (LLV) (VL: 200-999 copies/mL) or virologic failure (VF) (VL ≥1000 copies/mL).

View Article and Find Full Text PDF

Human genetic variants can affect TB and HIV drug metabolism, which may lead to toxicity or treatment failure. We evaluated associations between genetic variants of antiretroviral therapy (ART) and HIV-1 outcomes among TB/HIV patients. We included RePORT-Brazil participants with TB/HIV who initiated standard TB treatment [2 months of isoniazid/rifampicin (or rifabutin)/pyrazinamide/ethambutol, then 4 months or more of isoniazid/rifampicin (or rifabutin)], and ART.

View Article and Find Full Text PDF

Wheat is an important cereal crop globally and in the United States, and is the largest crop grown by acreage in Colorado. In June 2023, we observed wheat fields displaying severe yellowing and virus-like disease symptoms in plants across seven eastern Colorado counties (Yuma, Prowers, Kit Carson, Washington, Sedgewick, Morgan, and Weld). Symptomatic plants were prominent in fields and appeared bright yellow, with ringspots, mosaic patterning, and streaking on leaves.

View Article and Find Full Text PDF

Background: The 2023-24 U.S. influenza season was characterized by a predominance of A(H1N1)pdm09 virus circulation with co-circulation of A(H3N2) and B/Victoria viruses.

View Article and Find Full Text PDF
Article Synopsis
  • Acanthamoeba species are protozoa that can cause serious eye and CNS infections, and current treatments are often ineffective, especially in specific areas like the eye.
  • The study evaluates the effectiveness of ethanolic fruit extract of E. umbellata, silver nanoparticles derived from it, and lauric acid in killing Acanthamoeba trophozoites and protecting DNA from damage.
  • Results show that these treatments can significantly kill trophozoites and prevent DNA damage, suggesting potential new options for treating Acanthamoeba infections.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!