Plasmalemmal H+ extruders in mammalian alveolar macrophages.

Comp Biochem Physiol A Mol Integr Physiol

Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Texas Health Science Center, Houston, TX 77225-0708, USA.

Published: September 2002

The distribution of plasmalemmal V-type H+-pumps (V-ATPase) among mammalian macrophages (mvarphi) is uncertain and, hence, the functional significance of mvarphi plasmalemmal V-ATPase is unclear. This study investigated the role of V-ATPase in the regulation of intracellular pH (pH(i)) by resident alveolar mvarphi from sheep, pigs, dogs and rabbits. The fluorescent probe 2',7'-biscarboxyethyl-5,6-carboxyfluorescein was used to monitor baseline pH(i) and the rate of pH(i) recovery (dpH(i)/dt) from intracellular acid-loads (NH(4)Cl prepulse). Baseline pH(i) was 7.1-7.2. In sheep, pig and dog studies, 10 microM bafilomycin A(1) (a selective V-ATPase inhibitor) caused a rapid fall in baseline pH(i) (0.15-0.20 units); baseline values were unaffected by 0.1 mM amiloride (a Na+ transport inhibitor). V-ATPase activity (bafilomycin-sensitive component of dpH(i)/dt) was solely responsible for pH(i) recovery from intracellular acid-loads at acid-loaded pH(i) values >6.8-6.9. Na+/H+ exchange (amiloride-sensitive component of dpH(i)/dt) was detected only at acid-loaded pH(i) values <6.8. The activity of both H+ extruders increased at lower pH(i) values, albeit the Na+/H+ exchanger was more pH-sensitive than was V-ATPase. In rabbit studies, 10 microM bafilomycin A(1) and 1 mM N-ethylmaleimide (a non-specific H+-pump inhibitor) produced similar falls in baseline mvarphi pH(i), but had significantly larger effects than did the selective V-ATPase inhibitor concanamycin A (

Download full-text PDF

Source
http://dx.doi.org/10.1016/s1095-6433(02)00135-6DOI Listing

Publication Analysis

Top Keywords

baseline phi
12
phi
8
phi recovery
8
intracellular acid-loads
8
component dphi/dt
8
acid-loaded phi
8
phi values
8
v-atpase
5
plasmalemmal extruders
4
extruders mammalian
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!