Objective: We studied the in vitro and in vivo hematopoietic potential of human stem cells residing in muscle tissue collected from adults with head and neck cancer.

Materials And Methods: Adherent muscle cells were cultured in F12 medium with 10% fetal bovine serum and transplanted into immunodeficient mice.

Results: On day 12 we obtained a median of 500,000 adherent cells per gram muscle sample. Thy-1, endoglin, HER2/neu, and P1H12 were expressed in the majority of cells. CD34, VEGFR2, c-kit, VCAM-1, and CXCR4 were expressed in 0.5-1.5%, 1-5%, 1-15%, 9-15%, and 30% of cells, respectively. Immunodeficient mice transplanted with fresh muscle cells or less than 500,000 cultured cells showed little or no human engraftment. In mice transplanted with more than 500,000 cultured cells, up to 14% human CD45(+) hematopoietic cells (including myeloid and lymphoid subsets) were detected by flow cytometry. Engraftment was confirmed by polymerase chain reaction, Southern blotting, and DNA sequencing. Liver, muscle, and spleen evaluated for human DNA were positive in the majority of mice showing hematopoietic engraftment in the bone marrow. In vivo hematopoietic engraftment potential was maintained in cultured CD45(-) muscle cells transduced with the green fluorescence protein gene.

Conclusions: Human stem cells residing in muscle tissue can generate multilineage hematopoiesis in immunodeficient mice. Surprisingly, this hematopoietic potential increased in cultured versus fresh cells from muscle tissue.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0301-472x(02)00866-4DOI Listing

Publication Analysis

Top Keywords

muscle tissue
16
cells
13
vivo hematopoietic
12
hematopoietic potential
12
human stem
12
stem cells
12
cells residing
12
residing muscle
12
muscle cells
12
muscle
9

Similar Publications

Some technical limitations to using the eccentric mode to measure peak eccentric strength of the hamstrings (PTH) were raised. PTH also has limited validity to predict performance or injury risk factor. Therefore, our aim was to compare PTH and other isokinetic variables tested in the eccentric and passive modes.

View Article and Find Full Text PDF

Transcriptomic Profiling Reveals 17β-Estradiol Treatment Represses Ubiquitin-Proteasomal Mediators in Skeletal Muscle of Ovariectomized Mice.

J Cachexia Sarcopenia Muscle

February 2025

Division of Physical Therapy and Rehabilitation Science, Department of Family Medicine and Community Health, University of Minnesota, Minneapolis, Minnesota, USA.

Background: With a decline of 17β-estradiol (E2) at menopause, E2 has been implicated in the accompanied loss of skeletal muscle mass and strength. We aimed at characterizing transcriptomic responses of skeletal muscle to E2 in female mice, testing the hypothesis that genes and pathways related to contraction and maintenance of mass are differentially expressed in ovariectomized mice with and without E2 treatment.

Methods: Soleus and tibialis anterior (TA) muscles from C57BL/6 ovariectomized mice treated with placebo (OVX) or E2 (OVX + E2) for 60 days, or from skeletal muscle-specific ERα knockout (skmERαKO) mice and wild-type littermates (skmERαWT), were used for genome-wide expression profiling, quantitative real-time PCR and immunoblotting.

View Article and Find Full Text PDF

Background: Diaphragm thickness is a potential marker of sarcopenia in addition to muscle mass and strength at extremities. We aimed to clarify the descriptive epidemiology and prognostic significance of diaphragm thickness in the general population.

Methods: The study participants were 3324 community residents (mean age: 61.

View Article and Find Full Text PDF

Diabetic cardiomyopathy (DbCM), a significant chronic complication of diabetes, manifests as myocardial hypertrophy, fibrosis, and other pathological alterations that substantially impact cardiac function and elevate the risk of cardiovascular diseases and patient mortality. Myocardial energy metabolism disturbances in DbCM, encompassing glucose, fatty acid, ketone body and lactate metabolism, are crucial factors that contribute to the progression of DbCM. In recent years, novel protein post-translational modifications (PTMs) such as lactylation, β-hydroxybutyrylation, and succinylation have been demonstrated to be intimately associated with the myocardial energy metabolism process, and in conjunction with acetylation, they participate in the regulation of protein activity and gene expression activity in cardiomyocytes.

View Article and Find Full Text PDF

Introduction: Sarcomas are rare cancers originating from mesenchymal tissues, manifesting in diverse anatomical locations, but notably in connective tissue, muscles and the skeleton. Thoracic sarcomas present a unique diagnostic and surgical challenge attributable to their rarity and pathoanatomy. Standard practice currently comprises wide surgical excision, often accompanied by adjuvant chemotherapy and/or radiotherapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!