Skin inflammation causes innocuous heat to become painful. This condition, called heat allodynia, is a common feature of pathological pain states. Here, we show that heat allodynia is functionally and neuroanatomically distinct from normal heat pain. We subtracted positron emission tomography scans obtained during painful heating of normal skin from scans during equally intense but normally innocuous heating of capsaicin-treated skin. This comparison reveals the specific activation of a medial thalamic pathway to the frontal lobe during heat allodynia. The results suggest that different central pathways mediate the intensity and certain qualitative aspects of pain. In making this differentiation, the brain recognizes unique physiological features of different painful conditions, thus permitting adaptive responses to different pain states.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0896-6273(02)00767-5DOI Listing

Publication Analysis

Top Keywords

heat allodynia
16
pain states
8
heat
6
unique representation
4
representation heat
4
allodynia
4
allodynia human
4
human brain
4
brain skin
4
skin inflammation
4

Similar Publications

Enriched environment prevents hypernociception and depression-like behavior in a psychiatric disorder and neuropathic pain comorbidity experimental condition.

Physiol Behav

December 2024

Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes 3900, Ribeirão Preto, São Paulo,14049-900, Brazil; Behavioural Neurosciences Institute (INeC), Av. Bandeirantes 3900, Ribeirão Preto, 14040-900, São Paulo, Brazil. Electronic address:

Pain is a multifactorial debilitating condition associated with some psychiatric comorbidities such as generalized anxiety and depression. Concerning pharmacological treatment, which is often inefficient or associated with intense side effects, the physical and social context may be fundamental for patient's health improvement. In this sense, we sought to assess the impact of an enriched environment (EE) on neuropathic pain (NP) and depression comorbid.

View Article and Find Full Text PDF

Temporomandibular disorder (TMD) is the most prevalent painful condition in the craniofacial area. Recent studies have suggested that external or intrinsic trauma to the temporomandibular joint (TMJ) is associated with the onset of painful TMD in patients. Here, we investigated the effects of TMJ trauma through forced-mouth opening (FMO) in mice to determine pain behaviors and peripheral sensitization of trigeminal nociceptors in both sexes.

View Article and Find Full Text PDF

Objective: The aim of this systematic review is to identify pain profiling parameters that are reliably different between patients with migraine and healthy controls, using Quantitative Sensory Testing (QST) including Temporal Summation (TS), Conditioned Pain Modulation (CPM), and Corneal Confocal Microscopy (CCM).

Methods: A comprehensive literature search was conducted (up to 23 May 2024). The quality of the research was assessed using the Newcastle-Ottawa Scale (NOS) for non-randomized studies.

View Article and Find Full Text PDF

Chemotherapy-induced peripheral neuropathy (CIPN) is triggered by clinically recommended chemotherapeutics. Topical capsaicin (CAP) is a US-FDA-approved therapeutic entity for the mitigation of CIPN. Besides good skin permeation efficiency, CAP concentration in a topical dermal dosage form must be controlled due to its dose-dependent therapeutic and adverse effects.

View Article and Find Full Text PDF

Early life stress (ELS) is associated with an increased risk of experiencing chronic pain during adulthood, but surprisingly little is known about the short-term influence of ELS on nociceptive processing in the immature nervous system and the concomitant effects on somatosensation in the neonate. Here, we investigate how ELS modulates pain in neonatal mice and the transcriptional and electrophysiological signatures of immature dorsal root ganglia (DRG). Shortly after the administration of a neonatal limiting bedding (NLB) paradigm from postnatal days (P)2 to P9, both male and female pups exhibited robust hypersensitivity in response to tactile, pressure, and noxious cold stimuli compared with a control group housed under standard conditions, with no change in their sensitivity to noxious heat.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!