The anterior medial prefrontal cortex (AMPC) in humans is involved in affect and in regulating goal-directed behaviors. The precise function of the AMPC, however, is poorly understood. Using magnetic resonance imaging, we found that bilateral regions in the AMPC were selectively recruited to compute the reliability of subjects' expectations that developed when subjects were learning sequences of cognitive tasks. In contrast, regions similarly recruited in learning sequences of motor acts were found in the ventral striatum. Our results show that beyond the execution of motor acts, the AMPC is selectively engaged in computing the relevance of cognitive goals that subjects intend to achieve. This indicates that the fronto-striatal circuit, including the ventral striatum and AMPC, subserves hierarchically distinct evaluative processes mediating the human ability to build behavioral plans, ranging from motor to cognitive action plans.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0896-6273(02)00742-0DOI Listing

Publication Analysis

Top Keywords

medial prefrontal
8
motor cognitive
8
cognitive action
8
ampc selectively
8
learning sequences
8
motor acts
8
ventral striatum
8
ampc
5
prefrontal subcortical
4
subcortical mechanisms
4

Similar Publications

The medial prefrontal cortex (mPFC) is required for learning associations that determine whether animals approach or avoid potential threats in the environment. Dopaminergic (DA) projections from the ventral tegmental area (VTA) to the mPFC carry information, particularly about aversive outcomes, that may inform prefrontal computations. But the role of prefrontal DA in learning based on aversive outcomes remains poorly understood.

View Article and Find Full Text PDF

Astrocytes are the primary cell type in the central nervous system, responsible for maintaining the stability of the brain's internal environment and supporting neuronal functions. Researches have demonstrated the close relationship between astrocytes and the pathophysiology and etiology of major depressive disorder. However, the regulatory mechanisms of astrocytes during depression remain unclear.

View Article and Find Full Text PDF

Hyperphosphorylated tau accumulation is seen in the noradrenergic locus coeruleus from the earliest stages of Alzheimer's disease onwards and has been associated with symptoms of agitation. It is hypothesized that compensatory locus coeruleus-noradrenaline system overactivity and impaired emotion regulation could underlie agitation propensity, but to our knowledge this has not previously been investigated. A better understanding of the neurobiological underpinnings of agitation would help the development of targeted prevention and treatment strategies.

View Article and Find Full Text PDF

Neuronal dynamics of cerebellum and medial prefrontal cortex in adaptive motor timing.

Nat Commun

January 2025

Department of Neuroscience, Erasmus MC, Westzeedijk 353, 3015 AA, Rotterdam, the Netherlands.

Precise temporal control of sensorimotor coordination and adaptation is a fundamental basis of animal behavior. How different brain regions are involved in regulating the flexible temporal adaptation remains elusive. Here, we investigated the neuronal dynamics of the cerebellar interposed nucleus (IpN) and the medial prefrontal cortex (mPFC) neurons during temporal adaptation between delay eyeblink conditioning (DEC) and trace eyeblink conditioning (TEC).

View Article and Find Full Text PDF

Neural processing of auditory stimuli in rats: translational aspects using auditory oddball paradigms.

Behav Brain Res

January 2025

Department of Neurosurgery, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany; Cluster of Excellence Hearing4all, German Research Foundation, Hannover, Germany; Center for Systems Neuroscience (ZSN) Hannover, 30559 Hannover, Germany.

Background: The three-class oddball paradigm allows to investigate the processing of behaviorally relevant and irrelevant auditory stimuli. In humans, event-related potentials (ERPs) are used as neural correlate of behavior. We recorded local field potentials (LFPs) within the medial prefrontal cortex (mPFC) in rats during three-class and passive two-class oddball paradigms and analyzed the ERPs focusing on similarities to human recordings.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!