The effect of surface roughness on adhesion and tribological properties of films and interfaces is of key importance. Therefore, it is of utmost importance to be able to measure this quantity and to predict the effects that different roughness levels may cause. Roughness affects the propagation of surface acoustic waves on a material but there is little useful quantitative data on the topic. This work investigates the dispersive effect of roughness on surface acoustic wavepackets (30-200 MHz frequency range) for different degrees of nanometer roughness on silicon (0 0 1) and (1 1 1) surfaces, we show that the roughness-induced frequency dispersion effect is significant, and that although available theories agree qualitatively with the results, the theory is not adequate to predict the real SAW dispersion. These experimental results have considerable implications for design of SAW devices, for accuracy of Brillouin spectroscopy measurements, and for possible applications to non-destructive testing of materials. Previously unknown dispersive effects on anisotropic crystal surfaces are also demonstrated.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0041-624x(02)00095-1DOI Listing

Publication Analysis

Top Keywords

surface acoustic
12
surface roughness
8
roughness surface
8
roughness
6
effects surface
4
surface
4
acoustic wave
4
wave propagation
4
propagation semiconductor
4
semiconductor materials
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!