The DNA methylation pattern of a cell is exquisitely controlled during early development resulting in distinct methylation patterns. The tight control of DNA methylation is released in the cancer cell characterized by a reversal of methylation states. CpG island associated genes, in particular tumour suppressor or related genes, are often hypermethylated and this is associated with silencing of these genes. Therefore methylation is commonly convicted as a critical causal event in silencing this important class of genes in cancer. In this review, we argue that methylation is not the initial guilty party in triggering gene silencing in cancer, but that methylation of CpG islands is a consequence of prior gene silencing, similar to the role of methylation in maintaining the silencing of CpG island genes on the inactive X chromosome. We propose that gene silencing is the critical precursor in cancer, as it changes the dynamic interplay between de novo methylation and demethylation of the CpG island and tilts the balance to favour hypermethylation and chromatin inactivation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/sj.onc.1205598 | DOI Listing |
Mol Biol Rep
January 2025
Department of Molecular Biology Vadi Kampüsü, Istanbul Atlas University, Anadolu Cd., No 40, Kağıthane, Istanbul, 34408, Turkey.
Background: Modulation of protein synthesis according to the physiological cues is maintained through tight control of Eukaryotic Elongation Factor 2 (eEF2), whose unique translocase activity is essential for cell viability. Phosphorylation of eEF2 at its Thr56 residue inactivates this function in translation. In our previous study we reported a novel mode of post-translational modification that promotes higher efficiency in T56 phosphorylation.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Institute of Health Sciences, Department of Medical and Surgical Research, Hacettepe University, Ankara, Turkey.
Background: La-related protein 7 (LARP7) is a key regulator of RNA metabolism and is thought to play a role in various cellular processes. LARP7 gene autosomal recessive mutations are the cause of Alazami syndrome, which presents with skeletal abnormalities, intellectual disabilities, and facial dysmorphisms. This study aimed to determine the role of LARP7 in modulating gene expression dynamics during osteogenesis.
View Article and Find Full Text PDFJ Mol Histol
January 2025
Department of Structural and Functional Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil.
This study investigated tempol action on genes and miRNAs related to NFκB pathway in androgen dependent or independent cell lines and in TRAMP model in the early and late-stages of cancer progression. A bioinformatic search was conducted to select the miRNAs to be measured based on the genes of interest from NFκB pathway. The miR-let-7c-5p, miR-26a-5p and miR-155-5p and five target genes (BCL2, BCL2L1, RELA, TNF, PTGS2) were chosen for RT-PCR and gene enrichment analyses.
View Article and Find Full Text PDFβ-elemene has a variety of anti-inflammatory, antioxidant, and antitumor effects. Currently, the influence of β-elemene on adrenocortical carcinoma (ACC) malignant progression and action mechanism remains unclear. This research aims to explore the influence and action mechanism of β-elemene on ACC progression.
View Article and Find Full Text PDFArgonaute proteins are best known for their role in microRNA-mediated post-transcriptional gene silencing. Here, we show that AGO3 and AGO4, but not AGO2, localize to the sex chromatin of pachytene spermatocytes where they are required for transcriptional silencing of XY-linked genes, known as Meiotic Sex Chromosome Inactivation (MSCI). Using an mouse, we show that AGO3 and AGO4 are key regulators of spermatogenesis, orchestrating expression of meiosis-related genes during prophase I while maintaining silencing of spermiogenesis genes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!