While it has been demonstrated that GFP-tagged proteins were transported to their correct cellular compartments in most cells, attempts to secrete GFP/GFP-fusion through the default secretory pathway have not been as successful. In an attempt to induce secretion of GFP and Hexokinase (HXK)-GFP fusion in Saccharomycescerevisiae, we have cloned constructs that employed four different yeast secretion signal sequences, i.e., INU1, SUC2, PHO5, and MEL1. The expression is under the control of the galactose-inducible GAL1 promoter. Our results showed that all eight constructs entered the secretory pathway successfully, and the signal peptides were all cleaved off. However, none of the eight constructs were able to lead to secretion into the culture media or the periplasmic space. The expression levels of the eight constructs differ dramatically, depending on both the signal peptide and whether GFP was fused with HXK. Confocal microscopy studies revealed that the eight constructs also led to very different localization patterns. Among them, two constructs targeted GFP to the vacuole partially or exclusively, whereas others were mostly retained in the ER/Golgi compartments. Our efforts, together with those of others, seem to suggest that the signal peptide itself is not enough to lead to secretion of GFP from S. cerevisiae, although it has been successful in some other organisms. Nonetheless, the advantage of GFP's in vivo detection makes it a powerful tool for investigating protein localization events.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bp020066t | DOI Listing |
Aging Cell
January 2025
Chemical and Biological Integrative Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, Republic of Korea.
As emerging therapeutic strategies for aging and age-associated diseases, various biochemical approaches have been developed to selectively remove senescent cells, but how physical stimulus influences senescent cells and its possible application in senolytic therapy has not been reported yet. Here we developed a physical method to selectively stimulate senescent cells via low-intensity pulsed ultrasound (LIPUS) treatment. LIPUS stimulation did not affect the cell cycle, but selectively enhanced secretion of specific cytokines in senescent cells, known as the senescence-associated secretory phenotype (SASP), resulting in enhanced migration of monocytes/macrophages and upregulation of phagocytosis of senescent cells by M1 macrophage.
View Article and Find Full Text PDFSci China Life Sci
January 2025
Department of Endocrinology and Metabolism, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
Skeletal muscle plays a significant role in both local and systemic energy metabolism. The current investigation aims to explore the role of the Bambi gene in skeletal muscle, focusing on its implications for muscle hypertrophy and systemic metabolism. We hypothesize that skeletal muscle-specific deletion of Bambi induces muscle hypertrophy, improves metabolic performance, and activates thermogenic adipocytes via the reprogramming of progenitor of iWAT, offering potential therapeutic strategies for metabolic syndromes.
View Article and Find Full Text PDFAdipocyte
December 2025
Department of Nephrology, Shanghai General Hospital of Nanjing Medical University, Shanghai, China.
The objective of this study was to identify key secretory protein-encoding differentially expressed genes (SP-DEGs) in adipose tissue in female metabolic syndrome, thus detecting potential targets in treatment. We examined gene expression profiles in 8 women with metabolic syndrome and 7 healthy, normal body weight women. A total of 143 SP-DEGs were screened, including 83 upregulated genes and 60 downregulated genes.
View Article and Find Full Text PDFSci Rep
January 2025
Neurovascular Unit Research Group, Korea Brain Research Institute (KBRI), Daegu, South Korea.
Brain-derived neurotrophic factor (BDNF) plays an essential role in regulating diverse neuronal functions in an activity-dependent manner. Although BDNF is synthesized primarily in neurons, astrocytes can also supply BDNF through various routes, including the recycling of neuron-derived BDNF. Despite accumulating evidence for astrocytic BDNF uptake and resecretion of neuronal BDNF, the detailed mechanisms underlying astrocytic BDNF recycling remain unclear.
View Article and Find Full Text PDFJ Gastroenterol Hepatol
January 2025
Department of Oncology, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!