The study presented here, performed on the bone marrow from patients with idiopathic myelofibrosis (MF) and on a murine model of MF, demonstrates a pathological interaction between PMN leukocytes and megakaryocyte (Mk), correlated with MF development. The data obtained revealed abnormal subcellular P-selectin distribution, which appeared to correlate with excessive and pathological emperipolesis of PMN leukocytes within Mk, leading to the destruction of Mk storage organelles and leakage of alpha-granular contents into the bone marrow microenvironment. The prominent role of growth factors, PDGF and TGFbeta, stored in the Mk alpha-granular compartment in the generation of MF has been previously largely documented. Both growth factors are essential for the Mk-dependent fibroblast proliferation. The destructive mutual cellular interaction of Mk and PMN leading to the pathological release of PDGF and TGFbeta within the bone marrow microenvironment may participate, through fibroblast activation, to the generation of MF. Therefore, this study provides insight into the possible pathophysiological mechanisms for the genesis of MF.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10428190290016809DOI Listing

Publication Analysis

Top Keywords

bone marrow
12
interaction pmn
8
pmn leukocytes
8
marrow microenvironment
8
growth factors
8
pdgf tgfbeta
8
polymorphonuclear neutrophil
4
neutrophil megakaryocyte
4
megakaryocyte mutual
4
mutual involvement
4

Similar Publications

Background: Since there is currently no cure for amyotrophic lateral sclerosis (ALS), it is essential to search for diagnostic biomarkers and novel treatments to reduce the severity of this disease. One of these treatment approaches is stem cell transplantation.

Objective: This study aims to evaluate the safety and efficacy of repeated transplantation of autologous bone marrow-derived mesenchymal stem cells (BM-MSCs) in patients with ALS by analyzing clinical and molecular data.

View Article and Find Full Text PDF

Hemophagocytic lymphohistiocytosis (HLH) is a rare, life-threatening syndrome of excessive immune activation, leading to severe inflammation and organ damage. While more common in infants, HLH can occur at any age and is often triggered by infections such as Epstein-Barr virus (EBV). In this case, a 38-year-old man presented with a three-week history of fevers, night sweats, poor appetite, and severe anemia.

View Article and Find Full Text PDF

Cartilage repair remains a significant challenge due to the tissue's limited innate regenerative capacity. Despite advances in techniques such as microfracture, autologous chondrocyte implantation (ACI), and osteochondral grafting, long-term outcomes are often compromised by complications, including suboptimal tissue integration, graft resorption, and mechanical instability. Recently, biologically augmented scaffold-based cartilage repair has emerged as a promising approach for full-thickness osteochondral lesions.

View Article and Find Full Text PDF

Lipid Metabolic Heterogeneity during Early Embryogenesis Revealed by Hyper-3D Stimulated Raman Imaging.

Chem Biomed Imaging

January 2025

College of Biomedical Engineering & Instrument Science, Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310058, China.

Studying embryogenesis is fundamental to understanding developmental biology and reproductive medicine. Its process requires precise spatiotemporal regulations in which lipid metabolism plays a crucial role. However, the spatial dynamics of lipid species at the subcellular level remains obscure due to technical limitations.

View Article and Find Full Text PDF

From the Bone Marrow to the Heart: Cardiac Recovery in AL Amyloidosis.

JACC Asia

January 2025

Seymour, Paul and Gloria Milstein Division of Cardiology, Department of Medicine, and Department of Radiology, Columbia University Irving Medical Center/NewYork-Presbyterian Hospital, New York, New York, USA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!