A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Multiple-fiber probe design for fluorescence spectroscopy in tissue. | LitMetric

Multiple-fiber probe design for fluorescence spectroscopy in tissue.

Appl Opt

Wellman Laboratories of Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston 02114, USA.

Published: August 2002

The fiber-optic probe is an essential component of many quantitative fluorescence spectroscopy systems, enabling delivery of excitation light and collection of remitted fluorescence in a wide variety of clinical and laboratory situations. However, there is little information available on the role of illumination--collection geometry to guide the design of these components. Therefore we used a Monte Carlo model to investigate the effect of multifiber probe design parameters--numerical aperture, fiber diameter, source--collection fiber separation distance, and fiber-tissue spacer thickness--on light propagation and the origin of detected fluorescence. An excitation wavelength of 400 nm and an emission wavelength of 630 nm were simulated. Noteworthy effects included an increase in axial selectivity with decreasing fiber size and a transition with increasing fiber-tissue spacer size from a subsurface peak in fluorophore sensitivity to a nearly monotonic decrease typical of single-fiber probes. We provide theoretical evidence that probe design strongly affects tissue interrogation. Therefore application-specific customization of probe design may lead to improvements in the efficacy of fluorescence-based diagnostic devices.

Download full-text PDF

Source
http://dx.doi.org/10.1364/ao.41.004712DOI Listing

Publication Analysis

Top Keywords

probe design
16
fluorescence spectroscopy
8
fiber-tissue spacer
8
design
5
multiple-fiber probe
4
fluorescence
4
design fluorescence
4
spectroscopy tissue
4
tissue fiber-optic
4
probe
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!