The aim of this study was to investigate endotoxin concentrations in cyanobacterial water blooms and strains, and to assess the removal of endotoxins during drinking water treatment. Endotoxin concentrations were measured from 151 hepatotoxic, neurotoxic and non-toxic cyanobacterial water blooms by using Limulus amebocyte lysate (LAL) assay, and the results were compared to bacterial data. Endotoxin activities ranged from 20 to 3.8 x 10(4) endotoxin units (EU) per ml. Endotoxicity of the samples correlated with phycobiliprotein concentration that was used to assess cyanobacterial abundance, heterotrophic plate count, and Aeromonas spp. but it did not correlate with the number of coliforms or streptococci. The high endotoxin concentrations occasionally detected in the water bloom samples were probably due to Gram negative bacteria that existed together with cyanobacteria since the 26 axenic cyanobacterial strains from different genera that were studied showed very low endotoxin activity. No differences in endotoxin activity were detected between hepatotoxic, neurotoxic and non-toxic strains. Removal of endotoxins during drinking water treatment was studied at nine waterworks that previously had been associated with high numbers of cyanobacteria and that used different processes for water purification. Endotoxin concentration in raw waters ranged from 18 to 356 EU ml(-1). The treatment processes reduced 59-97% of the endotoxin activity; in the treated water the concentration ranged from 3 to 15 EU ml(-1). The most significant reduction occurred at the early stages of water treatment, during coagulation, settling and sand filtration. Activated carbon filtration either increased or had no effect on endotoxin concentration. Ozonation and chlorination had little effect on the endotoxin concentrations.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0043-1354(01)00478-xDOI Listing

Publication Analysis

Top Keywords

water treatment
16
endotoxin concentrations
16
drinking water
12
endotoxin activity
12
endotoxin
11
water
9
cyanobacterial water
8
water blooms
8
removal endotoxins
8
endotoxins drinking
8

Similar Publications

Isolation and characterization of ɸEcM-vB1 bacteriophage targeting multidrug-resistant Escherichia coli.

BMC Res Notes

January 2025

Department of Microbiology and Immunology, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt.

Objectives: The aim of this study is to screen for, isolate and characterize a bacteriophage designated ɸEcM-vB1 with confirmed lytic activity against multidrug-resistant (MDR) E. coli. Methods done in this research are bacteriophage isolation, purification, titer determination, bacteriophage morphology, host range determination, bacteriophage latent period and burst size determination, genomic analysis by restriction enzymes, and bacteriophage total protein content determination.

View Article and Find Full Text PDF

The world is now facing a water scarcity crisis due to waste, pollution, and uneven distribution of freshwater resources, which are limited. Thus, the creation of innovative, economical, and effective methods for purifying water is crucial. Here, the photo-assisted degradation of methylene blue (MB) dye under visible light and UV was achieved by using RGO photocatalyst loaded with ZnCuFeO in three different loaded 10%, 20%, and 30% called MRGO 10, MRGO 20, and MRGO 30.

View Article and Find Full Text PDF

The microbial pollution status of river surface water is important to ensure a river-based quality drinking water supply for the public. The present study aimed to investigate bacterial contamination status in the upper Mahaweli River, the main drinking water supplier to the hill country of Sri Lanka. Both the raw surface water and treated water, taken at 14 drinking water treatment plants (DWTPs) along the river segment of 60 km between Kotmale and Victoria reservoirs, were tested for total bacterial counts (TBC), total coliform counts (TCC) and faecal coliform counts (FCC).

View Article and Find Full Text PDF

Efficient removal of direct dyes and heavy metal ion by sodium alginate-based hydrogel microspheres: Equilibrium isotherms, kinetics and regeneration performance study.

Int J Biol Macromol

January 2025

Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China; Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266100, China; Key Laboratory of Ocean Observation and Information of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572024, China. Electronic address:

Improving the adsorption capacity of materials for pollutants by means of modification is an important direction in the research of water treatment technology. To improve the applicability of sodium alginate composites in the field of adsorption, magnetic sodium alginate-based hydrogel microsphere adsorbent material FeO@SA/PEI-Fe (FSPF) was synthesized in a single step by using polyethyleneimine grafting modification of sodium alginate by sol-gel method. The material was used for the removal of direct blue GL (DB 200) and direct date red B (DR 13) from simulated wastewater, as well as Cu(II) and Pb(II) from simulated wastewater with heavy metal ions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!