Molecular monitoring of donor/recipient T-cell kinetics early post-transplant can provide clues to the immunological events that govern host-versus-graft reaction (HVGR) and graft versus-host-disease (GVHD). We have previously used fluorescence in situ hybridization (FISH) with X and Y probes to monitor recipient T (R-T) cell clearance early after myeloablative allogeneic stem cell transplantation (ASCT). We demonstrated that impaired clearance of residual host-T-cells in the early days post-transplant was associated with graft rejection, while enhanced clearance could be an indicator of increased donor anti-host alloreactivity and predictive of acute GVHD. Although FISH is the most accurate quantitative molecular tool for the determination of the exact donor/recipient-T-cell numbers at any time points post-transplant, it has the disadvantage of being limited to sex mismatched donor/recipient pairs. Our goal was to develop a molecular approach that, irrespective of gender, would be comparable to FISH in accurately determining host residual T-cell clearance after myeloablative conditioning for ASCT. We have genotyped DNA from cell lysates using polymerase chain reaction (PCR) amplification of short tandem repeats (STR) with fluorescently labeled oligonucleotide primers, and used the Genescan 672 software for accurate quantitative analysis of the amplified alleles. Here, we show that this approach allowed us to achieve in T-cells accurate quantitative analyses of amplified donor/recipient alleles in sex matched patients on days +5, +8 and +12 post-transplant, despite severe leukopenia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10428190290026349 | DOI Listing |
BMC Microbiol
January 2025
Cellular Interactions of Bacterial Pathogens, Centre for Biological Threats and Special Pathogens, Highly Pathogenic Microorganisms (ZBS 2), Robert Koch Institute, Seestraße 10, 13353, Berlin, Germany.
Background: The zoonotic and highly infectious pathogen Francisella tularensis is the etiological agent of tularemia. Tularemia in humans is mainly caused by F. tularensis subspecies tularensis and holarctica, but Francisella species like F.
View Article and Find Full Text PDFNat Protoc
January 2025
Department Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany.
Deep and accurate proteome analysis is crucial for understanding cellular processes and disease mechanisms; however, it is challenging to implement in routine settings. In this protocol, we combine a robust chromatographic platform with a high-performance mass spectrometric setup to enable routine yet in-depth proteome coverage for a broad community. This entails tip-based sample preparation and pre-formed gradients (Evosep One) combined with a trapped ion mobility time-of-flight mass spectrometer (timsTOF, Bruker).
View Article and Find Full Text PDFSci Rep
January 2025
Colloid Chemistry, Department of Chemistry, University of Konstanz, Universitaetsstrasse 10, 78464, Konstanz, Germany.
Complex structures can be understood as compositions of smaller, more basic elements. The characterization of these structures requires an analysis of their constituents and their spatial configuration. Examples can be found in systems as diverse as galaxies, alloys, living tissues, cells, and even nanoparticles.
View Article and Find Full Text PDFNat Commun
January 2025
Center for Bioinformatics and Quantitative Biology, Richard and Loan Hill Department of Biomedical Engineering, The University of Illinois Chicago, 851 South Morgan Street, Chicago, IL, 60607, USA.
The bottleneck in enhanced sampling lies in finding collective variables that effectively accelerate protein conformational changes; true reaction coordinates that accurately predict the committor are the well-recognized optimal choice. However, identifying them requires unbiased natural reactive trajectories, which, paradoxically, require effective enhanced sampling. Using the generalized work functional method, we uncover that true reaction coordinates control both conformational changes and energy relaxation, enabling us to compute them from energy relaxation simulations.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
Department of Chemistry, The University of Manchester, Manchester M13 9PL, U.K.
The linear vibronic coupling (LVC) model is an approach for approximating how a molecular Hamiltonian changes in response to small changes in molecular geometry. The LVC framework thus has the ability to approximate molecular Hamiltonians at low computational expense but with quality approaching multiconfigurational calculations, when the change in geometry compared to the reference calculation used to parametrize it is small. Here, we show how the LVC approach can be used to project approximate spin Hamiltonians of a solvated lanthanide complex along a room-temperature molecular dynamics trajectory.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!