Scaling laws that describe complex interactions between organisms and their environment as a function of body size offer exciting potential for synthesis in biology. Home range size, or the area used by individual organisms, is a critical ecological variable that integrates behaviour, physiology and population density and strongly depends on organism size. Here we present a new model of home range-body size scaling based on fractal resource distributions, in which resource encounter rates are a function of body size. The model predicts no universally constant scaling exponent for home range, but defines a possible range of values set by geometric limits to resource density and distribution. The model unifies apparently conflicting earlier results and explains differences in scaling exponents among herbivorous and carnivorous mammals and birds. We apply the model to predict that home range increases with habitat fragmentation, and that the home ranges of larger species should be much more sensitive to habitat fragmentation than those of smaller species.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nature00840DOI Listing

Publication Analysis

Top Keywords

body size
12
size scaling
8
function body
8
size model
8
habitat fragmentation
8
size
6
scaling
5
fractal geometry
4
geometry predicts
4
predicts varying
4

Similar Publications

New evidence for the earliest ornithischian dinosaurs from Asia.

iScience

January 2025

Center for Vertebrate Evolutionary Biology, Yunnan University, Kunming 650091, China.

The Early Jurassic ornithischian dinosaurs in Laurasia are dominated by armored dinosaurs, with other early ornithischian groups being rare. Here, a new taxon, gen. et sp.

View Article and Find Full Text PDF

Introduction: Macrophages exhibit marked phenotypic heterogeneity within and across disease states, with lipid metabolic reprogramming contributing to macrophage activation and heterogeneity. Chronic inflammation has been observed in human benign prostatic hyperplasia (BPH) tissues, however macrophage activation states and their contributions to this hyperplastic disease have not been defined. We postulated that a shift in macrophage phenotypes with increasing prostate size could involve metabolic alterations resulting in prostatic epithelial or stromal hyperplasia.

View Article and Find Full Text PDF

Blood carries some of the most valuable biomarkers for disease screening as it interacts with various tissues and organs in the body. Human blood serum is a reservoir of high molecular weight fraction (HMWF) and low molecular weight fraction (LMWF) proteins. The LMWF proteins are considered disease marker proteins and are often suppressed by HMWF proteins during analysis.

View Article and Find Full Text PDF

Objective: This study focuses on the development and evaluation of nanostructured lipid carriers (NLCs) loaded with aloperine as a potential therapeutic approach for the treatment of pulmonary arterial hypertension.

Methods: The NLCs were designed to enhance the solubility, stability, and bioavailability of aloperine, a compound with vasodilatory and anti-inflammatory properties. Through a series of experiments including single-factor experimentation, transmission electron microscopy, high-performance liquid chromatography, in vivo pharmacokinetics, and tissue distribution studies, we assessed the physicochemical properties, drug release profiles, and in vitro and in vivo performance of this novel nanocarrier.

View Article and Find Full Text PDF

Background: We compared the safety and efficacy of holmium laser enucleation of the prostate (HoLEP) and transurethral resection of the prostate (TURP) in elderly men (aged ≥75 years) with benign prostatic hyperplasia (BPH).

Methods: A retrospective analysis of 151 patients (HoLEP: 72; TURP: 79) was conducted. Preoperative and postoperative parameters, including prostate size, International Prostate Symptom Score (IPSS), catheterization duration, hospital stay, and perioperative complications (incontinence and dysuria), were analyzed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!