New developments in frontotemporal dementia and parkinsonism linked to chromosome 17.

Curr Opin Neurol

Department of Neurology, Erasmus Medical Centre, University Hospital-Dijkzigt, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands.

Published: August 2002

Purpose Of Review: The identification of tau mutations in frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17) has revealed invaluable information regarding the role of the tau protein in neurodegenerative disease. Over the past year several new mutations have been identified, and experimental studies have provided further insight into the mechanism of neurodegeneration due to tau mutations and possible interactions with amyloid pathology.

Recent Findings: Extensive clinical and pathological variation is seen in patients with different types of mutation, as well as in patients with the same mutation. Mutations may be found in patients with frontotemporal dementia (FTD), parkinsonism, progressive supranuclear palsy and corticobasal degeneration, justifying mutation analysis in familial cases of these disorders. Genetic heterogeneity exists in frontotemporal dementia, because a number of FTDP-17 families have neither tau mutations nor tau pathology. Genetic linkage has been found in familial FTD (chromosome 3), FTD with amyotrophic lateral sclerosis (9q21-q22), and FTD with inclusion body myopathy (9q13.3-p12). Tau deposits may consist of mainly mutated protein, or of mutated and wild-type protein in equal amounts, depending on the mutation. Recent animal studies show that amyloid-beta deposition may accelerate formation of neurofibrillary tangles.

Summary: Hopefully, the identification of responsible genetic defects and associated proteins will be helpful in improving our understanding of the role of the tau protein in the common neurodegenerative process of frontotemporal degeneration.

Download full-text PDF

Source
http://dx.doi.org/10.1097/00019052-200208000-00004DOI Listing

Publication Analysis

Top Keywords

frontotemporal dementia
16
tau mutations
12
dementia parkinsonism
8
parkinsonism linked
8
linked chromosome
8
role tau
8
tau protein
8
tau
7
mutations
5
developments frontotemporal
4

Similar Publications

Purpose: Differentiating between Alzheimer's disease (AD) and frontotemporal dementia (FTD) can be challenging due to overlapping cognitive and behavioral manifestations. Evidence regarding non-invasive and early-stage biomarkers remains limited. Our aim was to identify retinal biomarkers for the risk of AD and FTD in populations without dementia and explore underlying brain structural mechanisms.

View Article and Find Full Text PDF

Tau pathology in the locus coeruleus (LC) is associated with several neurodegenerative conditions including Alzheimer's disease and frontotemporal dementia. Phosphorylated tau accumulates in the LC and results in inflammation, synaptic loss, and eventually cell death as the disease progresses. Loss of LC neurons and noradrenergic innervation is thought to contribute to the symptoms of cognitive decline later in disease.

View Article and Find Full Text PDF

Age-related hearing loss affects one-third of the population over 65 years. However, the diverse pathologies underlying these heterogenous phenotypes complicate genetic studies. To overcome challenges associated with accurate phenotyping for older adults with hearing loss, we applied computational phenotyping approaches based on audiometrically measured hearing loss.

View Article and Find Full Text PDF

The role of spatial arrangement of aromatic rings on the binding of ,'-diheteroaryl guanidine ligands to the G2C4/G2C4 motif DNA.

Phys Chem Chem Phys

January 2025

Department of Regulatory Bioorganic Chemistry, SANKEN (the Institute of Science and Industrial Research), Osaka University, 8-1, Mihogaoka, Ibaraki, Osaka, 567-0047, Japan.

Non-canonical DNA structures formed by aberrantly expanded repeat DNA are implicated in promoting repeat instability and the onset of repeat expansion diseases. Small molecules that target these disease-causing repeat DNAs hold promise as therapeutic agents for such diseases. Specifically, 1,3-di(quinolin-2-yl)guanidine (DQG) has been identified to bind to the disease-causing GGCCCC (G2C4) repeat DNA associated with amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD).

View Article and Find Full Text PDF

Trans-active response DNA-binding protein-43 (TDP-43) is the major pathological protein in motor neuron disease and TDP-43 pathology has been described in the brains of up to 50% of patients with Alzheimer disease (AD). Hippocampal sclerosis of aging (HS-A), an age-related neuropathology characterized by severe neuronal loss and gliosis in CA1 and/or subiculum, is found in ∼80% of cases that are positive for phosphorylated TDP-43. HS-A is seen as a co-pathology in cases with AD, limbic-predominant age-related TDP-43 encephalopathy neuropathologic changes (LATE-NC), and frontotemporal degeneration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!