Glucoraphanin in Brassica vegetables breaks down to either sulforaphane or sulforaphane nitrile depending on the conditions, and sulforaphane can be further conjugated with glutathione. Using a high-throughput microtitre plate assay and TaqMan real time quantitative RT-PCR to measure mRNA, we show that sulforaphane and its glutathione conjugate, but not the nitrile, increased significantly (P < 0.05) both UGT1A1 and GSTA1 mRNA levels in HepG2 and HT29 cells. These changes were accompanied by an increase in UGT1A1 protein, as assessed by immunoblotting, and a 2-8-fold increase in bilirubin glucuronidation. When treated together, the nitrile derivative did not affect sulforaphane induction. The induction of UGT1A1 and GSTA1 mRNA by sulforaphane was time and concentration dependent. The results show a functional induction of glucuronidation by sulforaphane but not sulforaphane nitrile, and show that the pathway of metabolism of glucosinolates in Brassica vegetables is important in determining the resulting biological and anticarcinogenic activities.

Download full-text PDF

Source
http://dx.doi.org/10.1093/carcin/23.8.1399DOI Listing

Publication Analysis

Top Keywords

sulforaphane nitrile
12
sulforaphane
10
sulforaphane glutathione
8
glutathione conjugate
8
brassica vegetables
8
sulforaphane sulforaphane
8
mrna sulforaphane
8
ugt1a1 gsta1
8
gsta1 mrna
8
nitrile
5

Similar Publications

: Plant derived isolated compounds or extracts enjoy great popularity among cancer patients, although knowledge about their mode of action is unclear. The present study investigated whether the combination of two herbal drugs, the cyanogenic diglucoside amygdalin and the isothiocyanate sulforaphane (SFN), influences growth and proliferation of renal cell carcinoma (RCC) cell lines. : A498, Caki-1, and KTCTL-26 cells were exposed to low-dosed amygdalin (1 or 5 mg/mL), or SFN (5 µM) or to combined SFN-amygdalin.

View Article and Find Full Text PDF

Glucosinolate Hydrolytic Products-A Multi-Arm Warrior.

J AOAC Int

October 2024

Department of Women and Baby, Sunnybrook Research Institute, 2075 Bayview Ave, North York, Ontario, M4N 3M5, Canada.

Background: Glucosinolates (GSLs) are the most controversial yet ignored class of phytochemicals. These are the middleman phytochemicals that have low bioactivity. But once there is any injury in the plant-manmade, insect caused, or natural-magic happens.

View Article and Find Full Text PDF

Variations in the concentration of glucoraphanin (GRA) and glucoerucin (GER), as well as the corresponding breakdown products, isothiocyanates (ITCs) and nitriles, were investigated during the growth of broccoli sprouts. The concentrations of GRA and GER decreased sharply from 33.66 µmol/g to 11.

View Article and Find Full Text PDF

Scope: The glucosinolate glucoraphanin from broccoli is converted to sulforaphane (SFN) or sulforaphane-nitrile (SFN-NIT) by plant enzymes or the gut microbiome. Human feeding studies typically observe high inter-individual variation in absorption and excretion of SFN, however, the source of this variation is not fully known. To address this, a human feeding trial to comprehensively evaluate inter-individual variation in the absorption and excretion of all known SFN metabolites in urine, plasma, and stool, and tested the hypothesis that gut microbiome composition influences inter-individual variation in total SFN excretion has been conducted.

View Article and Find Full Text PDF

Ricca assays allow the direct introduction of compounds extracted from plants or the organisms that attack them into the leaf vasculature. Using chromatographic fractionation of Arabidopsis (Arabidopsis thaliana) leaf extracts, we found glutamate was the most active low mass elicitor of membrane depolarization. However, other known elicitors of membrane depolarization are generated in the wound response.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!