Vascular leakage contributes to numerous disorders but only a limited number of molecules have been demonstrated to modulate permeability of the vessel wall. The vascular endothelial growth factor (VEGF) is a potent inducer of vascular leakage. Previous studies demonstrated that exogenous administration of placental growth factor (PlGF), a homologue of VEGF, stimulates vascular permeability but the role of endogenous PlGF in plasma extravasation during pathological conditions remains unknown. We recently generated PlGF deficient (PlGF(-/-)) mice and demonstrated that loss of PlGF impaired pathological angiogenesis by attenuating the response to VEGF. Here, we demonstrate that absence of PlGF reduces vascular leakage induced by skin wounding, allergens, and neurogenic inflammation. These findings suggest that inhibition of PlGF might be an attractive tool to reduce vascular leakage in various diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0006-291x(02)00677-0 | DOI Listing |
Ultrasound Med Biol
January 2025
Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA; Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA; Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA; Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL, USA. Electronic address:
Objective: Advanced imaging methods are crucial for understanding stroke mechanisms and discovering effective treatments to reduce bleeding and enhance recovery. In pre-clinical in vivo stroke imaging, MRI, CT and optical imaging are commonly used to evaluate stroke outcomes in rodent models. However, MRI and CT have limited spatial resolution for rodent brains, and optical imaging is hindered by limited imaging depth of penetration.
View Article and Find Full Text PDFInt Ophthalmol
January 2025
Department of Ophthalmology, The Second Hospital of Jilin University, #218 Ziqiang Street, Changchun, 130041, Jilin, China.
Purpose: The purpose of this study is to investigate the role of Secretogranin III (Scg3) in the pathogenesis of intraocular neovascular diseases and assess its potential as a therapeutic target for novel treatment strategies.
Methods: A literature review was conducted to examine the expression of Scg3 in intraocular neovascular diseases. We reviewed studies on the interaction of Scg3 with its homologous receptors and its effect on endothelial cell proliferation, migration, and vascular permeability-key processes involved in angiogenesis and neovascularization.
Biomater Sci
January 2025
Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, 1088 Xueyuan Boulevard, Shenzhen, Guangdong 518055, China.
Photothermal treatment has attracted immense interest as a promising approach for biomedical applications such as cancer ablation, yet its effectiveness is often limited by insufficient laser penetration and challenges in achieving efficient targeting of photothermal agents. Here we developed a transvascular interventional photothermal therapy (Ti-PTT), which employed a small-sized microcatheter (outer diameter: 0.60 mm, 1.
View Article and Find Full Text PDFPhytomedicine
January 2025
Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, PR China. Electronic address:
Objective: Sepsis is a life-threatening condition characterized by organ dysfunction resulting from the body's aberrant response to infection. A primary indicator of early sepsis is vascular leakage due to endothelial injury. The immunomodulatory effects of paeoniflorin are well established.
View Article and Find Full Text PDFPLoS Pathog
January 2025
Graduate Program in Immunology, Ann Arbor, Michigan, United States of America.
Neutrophils play key protective roles in influenza infections, yet excessive neutrophilic inflammation is a hallmark of acute lung injury during severe infections. Phenotypic heterogeneity is increasingly recognized in neutrophil populations; however, how functional variation in neutrophils between individuals determine the diverse outcomes of influenza remains unclear. To examine immunologic responses that may drive varying outcomes in influenza, we infected C57BL/6 (B6) and A/J mice with mouse-adapted influenza A virus A/PR/8/34 H1N1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!