A possible mechanism(s) behind exercise training-enhanced lipolysis was investigated in rat adipocytes. Exercise training (9 weeks; running) enhanced the activity of cAMP-dependent protein kinase (PKA) and the protein expressions of PKA subunits (catalytic, RII alpha, and RII beta) in P(40) fraction (sedimenting at 40,000g), but not in I(40) fraction (infranatant of 40,000g) of adipocyte homogenate. The expression of PKA-anchoring protein 150 (AKAP150) in P(40) fraction was greater in exercise-trained (TR) than in control (C) rats. Hormone-sensitive lipase (HSL) activities in both fractions were also greater in TR. On the other hand, stimulated lipolysis was accompanied by increased activities of HSL in P(40) but not in I(40) fraction. The decreases in stimulated lipolysis due to St-Ht31 were greater in TR rats. Thus, the mechanisms behind exercise training-enhanced adipocyte lipolysis could involve the increased activities of PKA and HSL with enhanced expressions of AKAP150 and some subunits of PKA, all of which may be compartmentalized within adipocytes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0006-291x(02)00664-2 | DOI Listing |
J Lipid Res
January 2025
Finsen Laboratory, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark. Electronic address:
Movement of lipoprotein lipase (LPL) from myocytes or adipocytes to the capillary lumen is essential for intravascular lipolysis and plasma triglyceride homeostasis-low LPL activity in the capillary lumen causes hypertriglyceridemia. The trans-endothelial transport of LPL depends on ionic interactions with GPIHBP1's intrinsically disordered N-terminal tail, which harbors two acidic clusters at positions 5-12 and 19-30. This polyanionic tail provides a molecular switch that controls LPL detachment from heparan sulfate proteoglycans (HSPGs) by competitive displacement.
View Article and Find Full Text PDFNat Commun
January 2025
Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Middle-aged obesity, characterized by excessive fat accumulation and systemic energy imbalance, often precedes various health complications. Recent research has unveiled a surprising link between DNA damage response and energy metabolism. Here, we explore the role of Eepd1, a DNA repair enzyme, in regulating adipose tissue function and obesity onset.
View Article and Find Full Text PDFZhejiang Da Xue Xue Bao Yi Xue Ban
January 2025
School of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China.
Objectives: To investigate the effect of pachymic acid on brown/beige adipocyte differentiation and lipid metabolism in preadipocytes 3T3-L1 MBX.
Methods: The brown cocktail method was employed to induce 3T3-L1 MBX cells to differentiate into beige adipocytes. The impact of pachymic acid on the viability of 3T3-L1 MBX preadipocytes was evaluated using the CCK-8 assay.
Int J Mol Sci
December 2024
Institute for Cardiovascular Prevention (IPEK), Faculty of Medicine, Ludwig-Maximilians-Universität München, 81377 Munich, Germany.
MicroRNAs (miRNAs) are short sequences of single-stranded non-coding RNAs that target messenger RNAs, leading to their repression or decay. Interestingly, miRNAs play a role in the cellular response to low oxygen levels, known as hypoxia, which is associated with reactive oxygen species and oxidative stress. However, the physiological implications of hypoxia-induced miRNAs ("hypoxamiRs") remain largely unclear.
View Article and Find Full Text PDFBiomedicines
December 2024
Department of Biochemistry, Microbiology and Physics, Faculty of Agriculture, Trakia University, 6000 Stara Zagora, Bulgaria.
() strains and their postbiotics show potential for managing metabolic disorders such as diabetes and obesity. Two newly isolated strains, M2.1 and P4, were yielded from anthills in Sinite Kamani National Park, Bulgaria.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!