Formation of the blastocyst is one of the first morphological changes in early embryonic development. Ion transport has been shown to be crucial for blastocoele cavity formation and expansion, although the mechanisms that underlie this process are presently unknown. As a transmembrane Cl(-) channel, the cystic fibrosis transmembrane conductance regulator (CFTR) may participate in ion transport and early blastocoele formation. CFTR mRNA was detected throughout preimplantation embryo development and in the unfertilized oocyte. Immunocytochemistry disclosed the presence of CFTR protein from the 8-cell stage, reaching maximum immunoreactivity at early blastocyst stage embryos. Patch clamp electrophysiology of morulae and blastocysts demonstrated typical CFTR Cl(-) channel activities in the apical membrane of trophectoderm cells. Thus CFTR is expressed both at mRNA and protein levels in human morulae and blastocysts, and functions as a cAMP-regulated apical membrane Cl(-) channel. These data suggest that CFTR may contribute to blastocoele formation in the early human embryo.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/molehr/8.8.758 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!